Drug Information
Drug (ID: DG00294) and It's Reported Resistant Information
Name |
Carboplatin
|
||||
---|---|---|---|---|---|
Synonyms |
Azanide; Carbopaltin; Carboplatine; Carboplatino; Carboplatinum; Cbdca; Ercar; Paraplatin; Carboplatine [French]; Carboplatino [Spanish]; Carboplatinum [Latin]; C 2538; JM 8; Carboplatin (USAN); IUPAC: Azane; JM-8; Paraplatin (TN); Paraplatin, Carboplatin; Paraplatin-AQ; Cis-Diammine(cyclobutanedicarboxylato)platinumII; Platinum(+2) Cation; Carboplatin (JAN/USP/INN); Carboplatin [USAN:INN:BAN:JAN]; Cyclobutane-1,1-dicarboxylate; Cyclobutane-1,1-dicarboxylic acid; Diammine-1,1-cyclobutane dicarboxylate platinum II; Cis-Diamine[1,1-cyclobutanedicarboxylato]platinum(II); Cis-Diammine(1,1-cyclobutanedicarboxylato) platinum; Cis-Diammine(1,1-cyclobutanedicarboxylato)platinum; Cis-Diammine[1,1-cyclobutane-dicarboxylato] platinum; Diammine(1,1-cyclobutanedicarboxylato)platinum (II); Platinum, {diammine[1,1-cyclobut; Cis-(1,1-Cyclobutanedicarboxylato)diammineplatinum(II); Cis-Diamine(1,1-cyclobutanedicarboxylato)platinum(II); Cis-Diammine(1,1-cyclobutanedicarboxylato)platinum(II); Platinum(II), (1, 1-cyclobutanedicar; Diammine[cyclobutane-1,1-dicarboxylato(2-)-k2O1,O1]platinum; Diammine(cyclobutane-1,1-dicarboxylato(2-)-O,O')platinum; Platinum, diammine(1,1-cyclobutanedicarboxylato(2-)-O,O')-, (SP-4-2); (SP-4-2)-diammine[cyclobutane-1,1-dicarboxylato(2-)-kappa(2)O,O']platinum; 1,1-Cyclobutanedicarboxylate diammine platinum (II); 1,1-Cyclobutanedicarboxylate diammine platinum(II)
Click to Show/Hide
|
||||
Indication |
In total 1 Indication(s)
|
||||
Structure | |||||
Drug Resistance Disease(s) |
Disease(s) with Clinically Reported Resistance for This Drug
(4 diseases)
Fallopian tube cancer [ICD-11: 2C74]
[2]
Merkel cell carcinoma [ICD-11: 2C34]
[3]
Ovarian cancer [ICD-11: 2C73]
[4]
Pituitary cancer [ICD-11: 2F37]
[5]
Disease(s) with Resistance Information Discovered by Cell Line Test for This Drug
(5 diseases)
Esophageal cancer [ICD-11: 2B70]
[6]
Liver cancer [ICD-11: 2C12]
[7]
Osteosarcoma [ICD-11: 2B51]
[8]
Ovarian cancer [ICD-11: 2C73]
[9]
Solid tumour/cancer [ICD-11: 2A00-2F9Z]
[10]
|
||||
Target | Human Deoxyribonucleic acid (hDNA) | NOUNIPROTAC | [1] | ||
Click to Show/Hide the Molecular Information and External Link(s) of This Drug | |||||
Formula |
C6H12N2O4Pt
|
||||
IsoSMILES |
C1CC(C1)(C(=O)O)C(=O)O.[NH2-].[NH2-].[Pt+2]
|
||||
InChI |
1S/C6H8O4.2H2N.Pt/c7-4(8)6(5(9)10)2-1-3-6;;;/h1-3H2,(H,7,8)(H,9,10);2*1H2;/q;2*-1;+2
|
||||
InChIKey |
VSRXQHXAPYXROS-UHFFFAOYSA-N
|
||||
PubChem CID | |||||
ChEBI ID | |||||
TTD Drug ID | |||||
DrugBank ID |
Type(s) of Resistant Mechanism of This Drug
EADR: Epigenetic Alteration of DNA, RNA or Protein
IDUE: Irregularity in Drug Uptake and Drug Efflux
RTDM: Regulation by the Disease Microenvironment
UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Their Corresponding Diseases
ICD-02: Benign/in-situ/malignant neoplasm
Solid tumour/cancer [ICD-11: 2A00-2F9Z]
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Key Molecule: TP53 target 1 (TP53TG1) | [10] | |||
Molecule Alteration | Expression | Down-regulation |
||
Resistant Disease | Solid tumour/cancer [ICD-11: 2A00-2F9Z] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | p53 signaling pathway | Inhibition | hsa04115 | |
In Vitro Model | HCT116 cells | Colon | Homo sapiens (Human) | CVCL_0291 |
MkN-45 cells | Gastric | Homo sapiens (Human) | CVCL_0434 | |
GCIY cells | Gastric | Homo sapiens (Human) | CVCL_1228 | |
KATO-3 cells | Gastric | Homo sapiens (Human) | CVCL_0371 | |
MkN-7 cells | Gastric | Homo sapiens (Human) | CVCL_1417 | |
SNU-1 cells | Gastric | Homo sapiens (Human) | CVCL_0099 | |
TGBC11TkB cells | Gastric | Homo sapiens (Human) | CVCL_1768 | |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qPCR | |||
Experiment for Drug Resistance |
MTT assay; TUNEL assay; xCELLigence Real-Time invasion and migration assays | |||
Mechanism Description | TP53TG1, a p53-induced LncRNA, binds to the multifaceted RNA/RNA binding protein YBX1 to prevent its nuclear localization and thus the YBX1-mediated activation of oncogenes. The epigenetic silencing of TP53TG1 in cancer cells promotes the YBX1-mediated activation of the PI3k/AkT pathway, which then creates further resistance not only to common chemotherapy RNA-damaging agents but also to small drug-targeted inhibitors. | |||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Key Molecule: Y-box-binding protein 1 (YBX1) | [10] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Solid tumour/cancer [ICD-11: 2A00-2F9Z] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | p53 signaling pathway | Inhibition | hsa04115 | |
In Vitro Model | HCT116 cells | Colon | Homo sapiens (Human) | CVCL_0291 |
MkN-45 cells | Gastric | Homo sapiens (Human) | CVCL_0434 | |
GCIY cells | Gastric | Homo sapiens (Human) | CVCL_1228 | |
KATO-3 cells | Gastric | Homo sapiens (Human) | CVCL_0371 | |
MkN-7 cells | Gastric | Homo sapiens (Human) | CVCL_1417 | |
SNU-1 cells | Gastric | Homo sapiens (Human) | CVCL_0099 | |
TGBC11TkB cells | Gastric | Homo sapiens (Human) | CVCL_1768 | |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
MTT assay; TUNEL assay; xCELLigence Real-Time invasion and migration assays | |||
Mechanism Description | TP53TG1, a p53-induced LncRNA, binds to the multifaceted RNA/RNA binding protein YBX1 to prevent its nuclear localization and thus the YBX1-mediated activation of oncogenes. The epigenetic silencing of TP53TG1 in cancer cells promotes the YBX1-mediated activation of the PI3k/AkT pathway, which then creates further resistance not only to common chemotherapy RNA-damaging agents but also to small drug-targeted inhibitors. |
Osteosarcoma [ICD-11: 2B51]
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Key Molecule: hsa-miR-34a-5p | [11] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Osteosarcoma [ICD-11: 2B51.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
In Vitro Model | G-292 cells | Bone | Homo sapiens (Human) | CVCL_2909 |
SJSA-1 cells | Bone | Homo sapiens (Human) | CVCL_1697 | |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
MTT assay; Annexin V-FITC/propidium iodide (PI) staining assay | |||
Mechanism Description | The miR34a-5p promotes the multi-chemoresistance of osteosarcoma via repression of the AGTR1 gene. | |||
Key Molecule: hsa-miR-199a-3p | [12] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Osteosarcoma [ICD-11: 2B51.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell viability | Activation | hsa05200 | |
NF-kappaB signaling pathway | Inhibition | hsa04064 | ||
In Vitro Model | U2OS cells | Bone | Homo sapiens (Human) | CVCL_0042 |
G-292 cells | Bone | Homo sapiens (Human) | CVCL_2909 | |
MNNG/HOS cells | Bone | Homo sapiens (Human) | CVCL_0439 | |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | The Ak4 gene is one of the targets of miR-199a-3p and negatively correlates with the effect of miR-199a-3p on OS drug-resistance. | |||
Key Molecule: hsa-miR-34a-5p | [8] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Osteosarcoma [ICD-11: 2B51.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell invasion | Activation | hsa05200 | |
Cell migration | Activation | hsa04670 | ||
Cell proliferation | Activation | hsa05200 | ||
MEF2 signaling pathway | Regulation | hsa04013 | ||
In Vitro Model | MG63 cells | Bone marrow | Homo sapiens (Human) | CVCL_0426 |
SAOS-2 cells | Bone marrow | Homo sapiens (Human) | CVCL_0548 | |
U2OS cells | Bone | Homo sapiens (Human) | CVCL_0042 | |
G-292 cells | Bone | Homo sapiens (Human) | CVCL_2909 | |
SJSA-1 cells | Bone | Homo sapiens (Human) | CVCL_1697 | |
MG63.2 cells | Bone | Homo sapiens (Human) | CVCL_R705 | |
MNNG/HOS cells | Bone | Homo sapiens (Human) | CVCL_0439 | |
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | The down-regulation of CD117 mediated by miR-34a-5p might be one of the reasons for OS drug resistance. CD117 may also regulate other processes, including cell adhesion, differentiation and migration, which are significant for cancer development and treatment. | |||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Key Molecule: Type-1 angiotensin II receptor (AGTR1) | [11] | |||
Molecule Alteration | Expression | Down-regulation |
||
Resistant Disease | Osteosarcoma [ICD-11: 2B51.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
In Vitro Model | G-292 cells | Bone | Homo sapiens (Human) | CVCL_2909 |
SJSA-1 cells | Bone | Homo sapiens (Human) | CVCL_1697 | |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
MTT assay; Annexin V-FITC/propidium iodide (PI) staining assay | |||
Mechanism Description | The miR34a-5p promotes the multi-chemoresistance of osteosarcoma via repression of the AGTR1 gene. | |||
Key Molecule: Adenylate kinase 4 (AK4) | [12] | |||
Molecule Alteration | Expression | Down-regulation |
||
Resistant Disease | Osteosarcoma [ICD-11: 2B51.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell viability | Activation | hsa05200 | |
NF-kappaB signaling pathway | Inhibition | hsa04064 | ||
In Vitro Model | U2OS cells | Bone | Homo sapiens (Human) | CVCL_0042 |
G-292 cells | Bone | Homo sapiens (Human) | CVCL_2909 | |
MNNG/HOS cells | Bone | Homo sapiens (Human) | CVCL_0439 | |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
Western blot analysis; RIP assay; Luciferase reporter assay | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | The Ak4 gene is one of the targets of miR-199a-3p and negatively correlates with the effect of miR-199a-3p on OS drug-resistance. | |||
Key Molecule: Mast/stem cell growth factor receptor Kit (KIT) | [8] | |||
Molecule Alteration | Expression | Down-regulation |
||
Resistant Disease | Osteosarcoma [ICD-11: 2B51.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell invasion | Activation | hsa05200 | |
Cell migration | Activation | hsa04670 | ||
Cell proliferation | Activation | hsa05200 | ||
MEF2 signaling pathway | Regulation | hsa04013 | ||
In Vitro Model | MG63 cells | Bone marrow | Homo sapiens (Human) | CVCL_0426 |
SAOS-2 cells | Bone marrow | Homo sapiens (Human) | CVCL_0548 | |
U2OS cells | Bone | Homo sapiens (Human) | CVCL_0042 | |
G-292 cells | Bone | Homo sapiens (Human) | CVCL_2909 | |
SJSA-1 cells | Bone | Homo sapiens (Human) | CVCL_1697 | |
MG63.2 cells | Bone | Homo sapiens (Human) | CVCL_R705 | |
MNNG/HOS cells | Bone | Homo sapiens (Human) | CVCL_0439 | |
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | The down-regulation of CD117 mediated by miR-34a-5p might be one of the reasons for OS drug resistance. CD117 may also regulate other processes, including cell adhesion, differentiation and migration, which are significant for cancer development and treatment. |
Esophageal cancer [ICD-11: 2B70]
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Irregularity in Drug Uptake and Drug Efflux (IDUE) | ||||
Key Molecule: Copper-transporting ATPase 1 (ATP7A) | [6] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Esophageal squamous cell carcinoma [ICD-11: 2B70.3] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
In Vitro Model | EC109 cells | Esophagus | Homo sapiens (Human) | CVCL_6898 |
Experiment for Molecule Alteration |
qRT-PCR; Western blotting assay | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | Overexpression of ATP7A in EC109/cisplatin cells might increase pumping platinum out of cells or binding and sequestration of platinum drugs, then decrease cellular platinum concentration or keep them away from accessing their key cytotoxic targets in the nucleus, finally result in cisplatin-resistance. |
Liver cancer [ICD-11: 2C12]
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Key Molecule: hsa-mir-146a | [7] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Hepatocellular carcinoma [ICD-11: 2C12.2] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
In Vitro Model | HCC Huh-7 cells | Liver | Homo sapiens (Human) | CVCL_0336 |
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | The HCC Huh-7 cell line was treated with adramycin (ADM), cisplatin (DDP), carboplatin (CBP), mitomycin C (MMC) or vincristine (VCR) at increasing concentrations to develop drug-resistant sublines. Among these 51 upregulated and downregulated miRNAs, 12 miRNAs were upregulated and 13 miRNAs were downregulated in Huh-7/VCR. Upregulation of miR-27b, miR-181a, miR-146b-5p, miR-181d and miR-146a expression was verified using real-time RT-PCR in the parental and the five drug-resistant cell lines. | |||
Key Molecule: hsa-miR-146b-5p | [7] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Hepatocellular carcinoma [ICD-11: 2C12.2] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
In Vitro Model | HCC Huh-7 cells | Liver | Homo sapiens (Human) | CVCL_0336 |
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | The HCC Huh-7 cell line was treated with adramycin (ADM), cisplatin (DDP), carboplatin (CBP), mitomycin C (MMC) or vincristine (VCR) at increasing concentrations to develop drug-resistant sublines. Among these 51 upregulated and downregulated miRNAs, 12 miRNAs were upregulated and 13 miRNAs were downregulated in Huh-7/VCR. Upregulation of miR-27b, miR-181a, miR-146b-5p, miR-181d and miR-146a expression was verified using real-time RT-PCR in the parental and the five drug-resistant cell lines. | |||
Key Molecule: hsa-mir-181a | [7] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Hepatocellular carcinoma [ICD-11: 2C12.2] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
In Vitro Model | HCC Huh-7 cells | Liver | Homo sapiens (Human) | CVCL_0336 |
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | The HCC Huh-7 cell line was treated with adramycin (ADM), cisplatin (DDP), carboplatin (CBP), mitomycin C (MMC) or vincristine (VCR) at increasing concentrations to develop drug-resistant sublines. Among these 51 upregulated and downregulated miRNAs, 12 miRNAs were upregulated and 13 miRNAs were downregulated in Huh-7/VCR. Upregulation of miR-27b, miR-181a, miR-146b-5p, miR-181d and miR-146a expression was verified using real-time RT-PCR in the parental and the five drug-resistant cell lines. | |||
Key Molecule: hsa-mir-181d | [7] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Hepatocellular carcinoma [ICD-11: 2C12.2] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
In Vitro Model | HCC Huh-7 cells | Liver | Homo sapiens (Human) | CVCL_0336 |
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | The HCC Huh-7 cell line was treated with adramycin (ADM), cisplatin (DDP), carboplatin (CBP), mitomycin C (MMC) or vincristine (VCR) at increasing concentrations to develop drug-resistant sublines. Among these 51 upregulated and downregulated miRNAs, 12 miRNAs were upregulated and 13 miRNAs were downregulated in Huh-7/VCR. Upregulation of miR-27b, miR-181a, miR-146b-5p, miR-181d and miR-146a expression was verified using real-time RT-PCR in the parental and the five drug-resistant cell lines. | |||
Key Molecule: hsa-mir-27b | [7] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Hepatocellular carcinoma [ICD-11: 2C12.2] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
In Vitro Model | HCC Huh-7 cells | Liver | Homo sapiens (Human) | CVCL_0336 |
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | The HCC Huh-7 cell line was treated with adramycin (ADM), cisplatin (DDP), carboplatin (CBP), mitomycin C (MMC) or vincristine (VCR) at increasing concentrations to develop drug-resistant sublines. Among these 51 upregulated and downregulated miRNAs, 12 miRNAs were upregulated and 13 miRNAs were downregulated in Huh-7/VCR. Upregulation of miR-27b, miR-181a, miR-146b-5p, miR-181d and miR-146a expression was verified using real-time RT-PCR in the parental and the five drug-resistant cell lines. |
Merkel cell carcinoma [ICD-11: 2C34]
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Irregularity in Drug Uptake and Drug Efflux (IDUE) | ||||
Key Molecule: ATP-binding cassette sub-family B5 (ABCB5) | [3] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Merkel cell carcinoma [ICD-11: 2C34.0] | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | MKL-2 cells | Peripheral blood | Homo sapiens (Human) | CVCL_D027 |
WaGa cells | Ascites | Homo sapiens (Human) | CVCL_E998 | |
MKL-1 cells | Liver | Homo sapiens (Human) | CVCL_2600 | |
MS-1 cells | Lung | Homo sapiens (Human) | CVCL_IQ55 | |
In Vivo Model | NSG mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR; Western blotting analysis | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | These findings in patient specimens were consistent with the possibility that ABCB5+ MCC cells are preferentially resistant to treatment with the first-line chemotherapeutic agents, carboplatin and etoposide. | |||
Key Molecule: ATP-binding cassette sub-family B5 (ABCB5) | [3] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Merkel cell carcinoma [ICD-11: 2C34.0] | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | MKL-2 cells | Peripheral blood | Homo sapiens (Human) | CVCL_D027 |
WaGa cells | Ascites | Homo sapiens (Human) | CVCL_E998 | |
MKL-1 cells | Liver | Homo sapiens (Human) | CVCL_2600 | |
MS-1 cells | Lung | Homo sapiens (Human) | CVCL_IQ55 | |
In Vivo Model | NSG mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR; Western blotting analysis | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | These findings in patient specimens were consistent with the possibility that ABCB5+ MCC cells are preferentially resistant to treatment with the first-line chemotherapeutic agents, carboplatin and etoposide. |
Ovarian cancer [ICD-11: 2C73]
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Key Molecule: Cancer susceptibility 11 (CASC11) | [1] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Ovarian squamous cell carcinoma [ICD-11: 2C73.3] | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | UWB1.289 cells | Ovary | Homo sapiens (Human) | CVCL_B079 |
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | Overexpression of CASC11 in ovarian squamous cell carcinoma mediates the development of cancer cell resistance to chemotherapy (oxaliplatin, tetraplatin, cisplatin, and carboplatin). | |||
Key Molecule: hsa-miR-193b-3p | [9] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
In Vitro Model | OVCAR3 cells | Ovary | Homo sapiens (Human) | CVCL_0465 |
Experiment for Molecule Alteration |
qPCR | |||
Experiment for Drug Resistance |
Alamar Blue assay | |||
Mechanism Description | 2 platinum-associated miRNAs (miR-193b* and miR-320) that inhibit the expression of five platinum-associated genes (CRIM1, IFIT2, OAS1, kCNMA1 and GRAMD1B). over-expression of miR-193b* in a randomly selected HapMap cell line results in resistance to both carboplatin and cisplatin. | |||
Regulation by the Disease Microenvironment (RTDM) | ||||
Key Molecule: hsa-mir-141 | [13] | |||
Molecule Alteration | Expression | Down-regulation |
||
Resistant Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | OVCAR3 cells | Ovary | Homo sapiens (Human) | CVCL_0465 |
MES-OV cells | Ovary | Homo sapiens (Human) | CVCL_CZ92 | |
In Vivo Model | Mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qPCR | |||
Experiment for Drug Resistance |
SRB colorimetric assay; Flow cytometry assay | |||
Mechanism Description | The miR-200 family has major roles in EMT and taxane resistance in taxane selected ovarian cancer cell variants, and that re-introduction of miR-200s was not sufficient to fully reverse the mesenchymal phenotype in these variants. Although miR-200s were able to restore paclitaxel sensitivity in one of the variants, they did not do so in the other, and produced resistance to carboplatin in both. The divergent effects of miR-200s on taxane and carboplatin cytotoxicity should be further investigated in ovarian cancers. miR-200c and miR-141 mimics conferred resistance to carboplatin in MES-OV/TP cells, similar to OVCAR-3/TP, but sensitized MES-OV to paclitaxel. Several genes involved in balancing oxidative stress were altered in OVCAR-3/TP 200c141 cells compared to controls. The miR-200 family plays major, cell-context dependent roles in regulating EMT and sensitivity to carboplatin and paclitaxel in OVCAR-3 and MES-OV cells. | |||
Key Molecule: hsa-mir-200c | [13] | |||
Molecule Alteration | Expression | Down-regulation |
||
Resistant Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | OVCAR3 cells | Ovary | Homo sapiens (Human) | CVCL_0465 |
MES-OV cells | Ovary | Homo sapiens (Human) | CVCL_CZ92 | |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qPCR | |||
Experiment for Drug Resistance |
SRB colorimetric assay; Flow cytometry assay | |||
Mechanism Description | The miR-200 family has major roles in EMT and taxane resistance in taxane selected ovarian cancer cell variants, and that re-introduction of miR-200s was not sufficient to fully reverse the mesenchymal phenotype in these variants. Although miR-200s were able to restore paclitaxel sensitivity in one of the variants, they did not do so in the other, and produced resistance to carboplatin in both. The divergent effects of miR-200s on taxane and carboplatin cytotoxicity should be further investigated in ovarian cancers. miR-200c and miR-141 mimics conferred resistance to carboplatin in MES-OV/TP cells, similar to OVCAR-3/TP, but sensitized MES-OV to paclitaxel. Several genes involved in balancing oxidative stress were altered in OVCAR-3/TP 200c141 cells compared to controls. The miR-200 family plays major, cell-context dependent roles in regulating EMT and sensitivity to carboplatin and paclitaxel in OVCAR-3 and MES-OV cells. | |||
Key Molecule: Tubulin beta-3 chain (TUBB3) | [13] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | OVCAR3 cells | Ovary | Homo sapiens (Human) | CVCL_0465 |
MES-OV cells | Ovary | Homo sapiens (Human) | CVCL_CZ92 | |
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
SRB colorimetric assay; Flow cytometry assay | |||
Mechanism Description | The miR-200 family has major roles in EMT and taxane resistance in taxane selected ovarian cancer cell variants, and that re-introduction of miR-200s was not sufficient to fully reverse the mesenchymal phenotype in these variants. Although miR-200s were able to restore paclitaxel sensitivity in one of the variants, they did not do so in the other, and produced resistance to carboplatin in both. The divergent effects of miR-200s on taxane and carboplatin cytotoxicity should be further investigated in ovarian cancers. miR-200c and miR-141 mimics conferred resistance to carboplatin in MES-OV/TP cells, similar to OVCAR-3/TP, but sensitized MES-OV to paclitaxel. Several genes involved in balancing oxidative stress were altered in OVCAR-3/TP 200c141 cells compared to controls. The miR-200 family plays major, cell-context dependent roles in regulating EMT and sensitivity to carboplatin and paclitaxel in OVCAR-3 and MES-OV cells. | |||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Key Molecule: Cysteine-rich motor neuron 1 protein (CRIM1) | [9] | |||
Molecule Alteration | Expression | Down-regulation |
||
Resistant Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
In Vitro Model | OVCAR3 cells | Ovary | Homo sapiens (Human) | CVCL_0465 |
Experiment for Molecule Alteration |
qPCR | |||
Experiment for Drug Resistance |
Alamar Blue assay | |||
Mechanism Description | 2 platinum-associated miRNAs (miR-193b* and miR-320) that inhibit the expression of five platinum-associated genes (CRIM1, IFIT2, OAS1, kCNMA1 and GRAMD1B). over-expression of miR-193b* in a randomly selected HapMap cell line results in resistance to both carboplatin and cisplatin. | |||
Key Molecule: Interferon-induced protein with tetratricopeptide repeats 2 (IFIT2) | [9] | |||
Molecule Alteration | Expression | Down-regulation |
||
Resistant Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
In Vitro Model | OVCAR3 cells | Ovary | Homo sapiens (Human) | CVCL_0465 |
Experiment for Molecule Alteration |
qPCR | |||
Experiment for Drug Resistance |
Alamar Blue assay | |||
Mechanism Description | 2 platinum-associated miRNAs (miR-193b* and miR-320) that inhibit the expression of five platinum-associated genes (CRIM1, IFIT2, OAS1, kCNMA1 and GRAMD1B). over-expression of miR-193b* in a randomly selected HapMap cell line results in resistance to both carboplatin and cisplatin. | |||
Key Molecule: Carboxylesterase 4A (CES4A) | [4] | |||
Molecule Alteration | Missense mutation | p.P55S |
||
Resistant Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Identified from the Human Clinical Data | |||
Cell Pathway Regulation | AXLK signaling pathway | Activation | hsa01521 | |
In Vitro Model | Plasma | Blood | Homo sapiens (Human) | N.A. |
Experiment for Molecule Alteration |
Circulating-free DNA assay; Whole exome sequencing assay | |||
Mechanism Description | Quantification of allele fractions in plasma identified increased representation of mutant alleles in association with emergence of therapy resistance. | |||
Key Molecule: Mitotic checkpoint serine/threonine-protein kinase BUB1 (BUB1) | [4] | |||
Molecule Alteration | Missense mutation | p.M889K |
||
Resistant Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Identified from the Human Clinical Data | |||
Cell Pathway Regulation | AXLK signaling pathway | Activation | hsa01521 | |
In Vitro Model | Plasma | Blood | Homo sapiens (Human) | N.A. |
Experiment for Molecule Alteration |
Circulating-free DNA assay; Whole exome sequencing assay | |||
Mechanism Description | Quantification of allele fractions in plasma identified increased representation of mutant alleles in association with emergence of therapy resistance. | |||
Key Molecule: Interleukin 6 receptor (IL6R) | [2] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
In Vitro Model | SkOV3 cells | Ovary | Homo sapiens (Human) | CVCL_0532 |
A2780 cells | Ovary | Homo sapiens (Human) | CVCL_0134 | |
Experiment for Molecule Alteration |
ELISA assay | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | Our findings in the fallopian tube cancer and ovarian cancer cell lines showed that SKOV3 cells displayed 10-fold greater resistance to cisplatin and 5.8 times more resistance to carboplatin than A2780 cells. SKOV3 cells displayed platinum-induced IL-6 and IL-8 overproduction whereas wild type A2780 displayed no detectable cytokine production. | |||
Key Molecule: Interleukin-8 (IL8) | [2] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
In Vitro Model | SkOV3 cells | Ovary | Homo sapiens (Human) | CVCL_0532 |
A2780 cells | Ovary | Homo sapiens (Human) | CVCL_0134 | |
Experiment for Molecule Alteration |
ELISA assay | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | Our findings in the fallopian tube cancer and ovarian cancer cell lines showed that SKOV3 cells displayed 10-fold greater resistance to cisplatin and 5.8 times more resistance to carboplatin than A2780 cells. SKOV3 cells displayed platinum-induced IL-6 and IL-8 overproduction whereas wild type A2780 displayed no detectable cytokine production. | |||
Key Molecule: Interleukin 6 receptor (IL6R) | [2] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Ovarian cancer tissue | N.A. | ||
Experiment for Molecule Alteration |
ELISA assay | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | Our findings in the fallopian tube cancer and ovarian cancer cell lines showed that SKOV3 cells displayed 10-fold greater resistance to cisplatin and 5.8 times more resistance to carboplatin than A2780 cells. SKOV3 cells displayed platinum-induced IL-6 and IL-8 overproduction whereas wild type A2780 displayed no detectable cytokine production. | |||
Key Molecule: Interleukin-8 (IL8) | [2] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Ovarian cancer tissue | N.A. | ||
Experiment for Molecule Alteration |
ELISA assay | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | Our findings in the fallopian tube cancer and ovarian cancer cell lines showed that SKOV3 cells displayed 10-fold greater resistance to cisplatin and 5.8 times more resistance to carboplatin than A2780 cells. SKOV3 cells displayed platinum-induced IL-6 and IL-8 overproduction whereas wild type A2780 displayed no detectable cytokine production. |
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Key Molecule: hsa-miR-34c-5p | [14] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | AKT signaling pathway | Activation | hsa04151 | |
In Vitro Model | OVS1 cells | Ovary | Homo sapiens (Human) | N.A. |
SkOV-I6 cells | Ovary | Homo sapiens (Human) | N.A. | |
In Vivo Model | Mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | miRNA-34c-5p inhibits amphiregulin-induced ovarian cancer stemness and drug resistance via downregulation of the AREG-EGFR-ERk pathway. | |||
Key Molecule: hsa-miR-634 | [15] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
MAPK/RAS signaling pathway | Regulation | hsa04010 | ||
In Vitro Model | A2780 cells | Ovary | Homo sapiens (Human) | CVCL_0134 |
T24 cells | Bladder | Homo sapiens (Human) | CVCL_0554 | |
HCT8 cells | Colon | Homo sapiens (Human) | CVCL_2478 | |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | miR-634 is an important player in cisplatin-resistance. First of all, miR-634 was the only miR miR-634 overexpression in ovarian cancer cell lines and patient samples negatively regulates important cell-cycle genes (CCND1) and Ras-MAPk pathway components (GRB2, ERk2, RSk1 and RSk2). Inhibition of the Ras-MAPk pathway resulted in increased sensitivity to cisplatin, suggesting that the miR-634-mediated repression of this pathway is responsible for the effect of miR-634 on cisplatin resistance. | |||
Key Molecule: Cellular tumor antigen p53 (TP53) | [16] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell proliferation | Inhibition | hsa05200 | |
In Vitro Model | 3AO cells | Ovary | Homo sapiens (Human) | N.A. |
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | LncRNA PVT1 boost the expression of p53 and TIMP 1 to enhance ovarian cancer cells chemosensitivity for carboplatin and docetaxel. | |||
Key Molecule: Pvt1 oncogene (PVT1) | [16] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell proliferation | Inhibition | hsa05200 | |
In Vitro Model | 3AO cells | Ovary | Homo sapiens (Human) | N.A. |
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | LncRNA PVT1 boost the expression of p53 and TIMP 1 to enhance ovarian cancer cells chemosensitivity for carboplatin and docetaxel. | |||
Key Molecule: Metalloproteinase inhibitor 1 (TIMP1) | [16] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell proliferation | Inhibition | hsa05200 | |
In Vitro Model | 3AO cells | Ovary | Homo sapiens (Human) | N.A. |
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | LncRNA PVT1 boost the expression of p53 and TIMP 1 to enhance ovarian cancer cells chemosensitivity for carboplatin and docetaxel. | |||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Key Molecule: Amphiregulin (AREG) | [14] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | AKT signaling pathway | Activation | hsa04151 | |
In Vitro Model | OVS1 cells | Ovary | Homo sapiens (Human) | N.A. |
SkOV-I6 cells | Ovary | Homo sapiens (Human) | N.A. | |
In Vivo Model | Mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | miRNA-34c-5p inhibits amphiregulin-induced ovarian cancer stemness and drug resistance via downregulation of the AREG-EGFR-ERk pathway. | |||
Key Molecule: G1/S-specific cyclin-D1 (CCND1) | [15] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
MAPK/RAS signaling pathway | Regulation | hsa04010 | ||
In Vitro Model | A2780 cells | Ovary | Homo sapiens (Human) | CVCL_0134 |
T24 cells | Bladder | Homo sapiens (Human) | CVCL_0554 | |
HCT8 cells | Colon | Homo sapiens (Human) | CVCL_2478 | |
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | miR-634 is an important player in cisplatin-resistance. First of all, miR-634 was the only miR miR-634 overexpression in ovarian cancer cell lines and patient samples negatively regulates important cell-cycle genes (CCND1) and Ras-MAPk pathway components (GRB2, ERk2, RSk1 and RSk2). Inhibition of the Ras-MAPk pathway resulted in increased sensitivity to cisplatin, suggesting that the miR-634-mediated repression of this pathway is responsible for the effect of miR-634 on cisplatin resistance. | |||
Key Molecule: Mitogen-activated protein kinase 1 (MAPK1) | [15] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
MAPK/RAS signaling pathway | Regulation | hsa04010 | ||
In Vitro Model | A2780 cells | Ovary | Homo sapiens (Human) | CVCL_0134 |
T24 cells | Bladder | Homo sapiens (Human) | CVCL_0554 | |
HCT8 cells | Colon | Homo sapiens (Human) | CVCL_2478 | |
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | miR-634 is an important player in cisplatin-resistance. First of all, miR-634 was the only miR miR-634 overexpression in ovarian cancer cell lines and patient samples negatively regulates important cell-cycle genes (CCND1) and Ras-MAPk pathway components (GRB2, ERk2, RSk1 and RSk2). Inhibition of the Ras-MAPk pathway resulted in increased sensitivity to cisplatin, suggesting that the miR-634-mediated repression of this pathway is responsible for the effect of miR-634 on cisplatin resistance. | |||
Key Molecule: Growth factor receptor-bound protein 2 (GRB2) | [15] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
MAPK/RAS signaling pathway | Regulation | hsa04010 | ||
In Vitro Model | A2780 cells | Ovary | Homo sapiens (Human) | CVCL_0134 |
T24 cells | Bladder | Homo sapiens (Human) | CVCL_0554 | |
HCT8 cells | Colon | Homo sapiens (Human) | CVCL_2478 | |
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | miR-634 is an important player in cisplatin-resistance. First of all, miR-634 was the only miR miR-634 overexpression in ovarian cancer cell lines and patient samples negatively regulates important cell-cycle genes (CCND1) and Ras-MAPk pathway components (GRB2, ERk2, RSk1 and RSk2). Inhibition of the Ras-MAPk pathway resulted in increased sensitivity to cisplatin, suggesting that the miR-634-mediated repression of this pathway is responsible for the effect of miR-634 on cisplatin resistance. | |||
Key Molecule: Ribosomal protein S6 kinase alpha-3 (RPS6KA3) | [15] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
MAPK/RAS signaling pathway | Regulation | hsa04010 | ||
In Vitro Model | A2780 cells | Ovary | Homo sapiens (Human) | CVCL_0134 |
T24 cells | Bladder | Homo sapiens (Human) | CVCL_0554 | |
HCT8 cells | Colon | Homo sapiens (Human) | CVCL_2478 | |
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | miR-634 is an important player in cisplatin-resistance. First of all, miR-634 was the only miR miR-634 overexpression in ovarian cancer cell lines and patient samples negatively regulates important cell-cycle genes (CCND1) and Ras-MAPk pathway components (GRB2, ERk2, RSk1 and RSk2). Inhibition of the Ras-MAPk pathway resulted in increased sensitivity to cisplatin, suggesting that the miR-634-mediated repression of this pathway is responsible for the effect of miR-634 on cisplatin resistance. |
Fallopian tube cancer [ICD-11: 2C74]
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Key Molecule: Interleukin 6 receptor (IL6R) | [2] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Fallopian tube cancer [ICD-11: 2C74.0] | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Fallopian tube cancer tissue | N.A. | ||
Experiment for Molecule Alteration |
ELISA assay | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | Our findings in the fallopian tube cancer and ovarian cancer cell lines showed that SKOV3 cells displayed 10-fold greater resistance to cisplatin and 5.8 times more resistance to carboplatin than A2780 cells. SKOV3 cells displayed platinum-induced IL-6 and IL-8 overproduction whereas wild type A2780 displayed no detectable cytokine production. | |||
Key Molecule: Interleukin-8 (IL8) | [2] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Fallopian tube cancer [ICD-11: 2C74.0] | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Fallopian tube cancer tissue | N.A. | ||
Experiment for Molecule Alteration |
ELISA assay | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | Our findings in the fallopian tube cancer and ovarian cancer cell lines showed that SKOV3 cells displayed 10-fold greater resistance to cisplatin and 5.8 times more resistance to carboplatin than A2780 cells. SKOV3 cells displayed platinum-induced IL-6 and IL-8 overproduction whereas wild type A2780 displayed no detectable cytokine production. |
Retina cancer [ICD-11: 2D02]
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Key Molecule: hsa-mir-34 | [17] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Retinoblastoma [ICD-11: 2D02.2] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
MAGE-A/p53 signaling pathway | Regulation | hsa04115 | ||
In Vitro Model | HXO-Rb44 cells | Retina | Homo sapiens (Human) | CVCL_D542 |
SO-Rb50 cells | Retina | Homo sapiens (Human) | CVCL_D543 | |
WERI-Rb-1 cells | Retina | Homo sapiens (Human) | CVCL_1792 | |
Y79 cells | Retina | Homo sapiens (Human) | CVCL_1893 | |
Experiment for Molecule Alteration |
RT-qPCR | |||
Experiment for Drug Resistance |
Freedom Evolyzer-2200 Enzyme-Linked Immunometric meter; Flow cytometry assay | |||
Mechanism Description | miR-34a may function as a tumor suppressor for RB by targeting MAGE-A and upregulating p53 expression to enhance cell apoptosis and chemosensitivity (Carboplatin; Etoposide; Adriamycin; vincristine). | |||
Key Molecule: hsa-miR-3163 | [18] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Retinoblastoma [ICD-11: 2D02.2] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | WERI-Rb-1 cells | Retina | Homo sapiens (Human) | CVCL_1792 |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | Silencing of ABCG2 by MicroRNA-3163 inhibits multidrug resistance in retinoblastoma cancer stem cells. | |||
Irregularity in Drug Uptake and Drug Efflux (IDUE) | ||||
Key Molecule: ATP-binding cassette sub-family G2 (ABCG2) | [18] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Retinoblastoma [ICD-11: 2D02.2] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | WERI-Rb-1 cells | Retina | Homo sapiens (Human) | CVCL_1792 |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | Silencing of ABCG2 by MicroRNA-3163 inhibits multidrug resistance in retinoblastoma cancer stem cells. | |||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Key Molecule: Melanoma antigen A 4 (MAGE4) | [17] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Retinoblastoma [ICD-11: 2D02.2] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
MAGE-A/p53 signaling pathway | Regulation | hsa04115 | ||
In Vitro Model | HXO-Rb44 cells | Retina | Homo sapiens (Human) | CVCL_D542 |
SO-Rb50 cells | Retina | Homo sapiens (Human) | CVCL_D543 | |
WERI-Rb-1 cells | Retina | Homo sapiens (Human) | CVCL_1792 | |
Y79 cells | Retina | Homo sapiens (Human) | CVCL_1893 | |
Experiment for Molecule Alteration |
Western blot analysis; RT-qPCR | |||
Experiment for Drug Resistance |
Freedom Evolyzer-2200 Enzyme-Linked Immunometric meter; Flow cytometry assay | |||
Mechanism Description | miR-34a may function as a tumor suppressor for RB by targeting MAGE-A and upregulating p53 expression to enhance cell apoptosis and chemosensitivity (Carboplatin; Etoposide; Adriamycin; vincristine). |
Pituitary cancer [ICD-11: 2F37]
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Key Molecule: Bcl-2-associated agonist of cell death (BAD) | [5] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Pituitary adenoma [ICD-11: 2F37.1] | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Pituitary tumour stem-like cells | Pituitary | Homo sapiens (Human) | N.A. |
In Vivo Model | NOD/SCID mice xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
WST-1 proliferation assay | |||
Mechanism Description | Stem cells are generally known to preferentially express antiapoptotic genes, such as BCL-2, cIAP1, NAIP, and XIAP.The expression levels of these antiapoptotic genes in PASC1 were one- to sixfolds higher than those in its daughter cells. | |||
Key Molecule: Baculoviral IAP repeat containing 2 (BIRC2) | [5] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Pituitary adenoma [ICD-11: 2F37.1] | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Pituitary tumour stem-like cells | Pituitary | Homo sapiens (Human) | N.A. |
In Vivo Model | NOD/SCID mice xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
WST-1 proliferation assay | |||
Mechanism Description | Stem cells are generally known to preferentially express antiapoptotic genes, such as BCL-2, cIAP1, NAIP, and XIAP.The expression levels of these antiapoptotic genes in PASC1 were one- to sixfolds higher than those in its daughter cells. | |||
Key Molecule: Baculoviral IAP repeat-containing protein 1 (BIRC1) | [5] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Pituitary adenoma [ICD-11: 2F37.1] | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Pituitary tumour stem-like cells | Pituitary | Homo sapiens (Human) | N.A. |
In Vivo Model | NOD/SCID mice xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
WST-1 proliferation assay | |||
Mechanism Description | Stem cells are generally known to preferentially express antiapoptotic genes, such as BCL-2, cIAP1, NAIP, and XIAP.The expression levels of these antiapoptotic genes in PASC1 were one- to sixfolds higher than those in its daughter cells. | |||
Key Molecule: E3 ubiquitin-protein ligase XIAP (XIAP) | [5] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Pituitary adenoma [ICD-11: 2F37.1] | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Pituitary tumour stem-like cells | Pituitary | Homo sapiens (Human) | N.A. |
In Vivo Model | NOD/SCID mice xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
WST-1 proliferation assay | |||
Mechanism Description | Stem cells are generally known to preferentially express antiapoptotic genes, such as BCL-2, cIAP1, NAIP, and XIAP.The expression levels of these antiapoptotic genes in PASC1 were one- to sixfolds higher than those in its daughter cells. |
References
If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.