Disease Information
General Information of the Disease (ID: DIS00139)
Name |
Bacteremia
|
---|---|
ICD |
ICD-11: MA15
|
Resistance Map |
Type(s) of Resistant Mechanism of This Disease
IDUE: Irregularity in Drug Uptake and Drug Efflux
UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Drug
Approved Drug(s)
13 drug(s) in total
Chloramphenicol
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Irregularity in Drug Uptake and Drug Efflux (IDUE) | ||||
Key Molecule: Lincomycin resistance efflux pump (LMRS) | [1] | |||
Resistant Disease | Staphylococcus aureus infection [ICD-11: 1B54.0] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Drug | Chloramphenicol | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Escherichia coli kAM32 | 562 | ||
Staphylococcus aureus OM505 | 1280 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay; Allelic frequency measurement assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | LmrS is a multidrug efflux pump of the major facilitator superfamily from staphylococcus aureus. |
Clindamycin
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Irregularity in Drug Uptake and Drug Efflux (IDUE) | ||||
Key Molecule: ABC protein lsaC (lsaC-Unclear) | [2] | |||
Resistant Disease | Streptococcus agalactiae infection [ICD-11: 1B21.2] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Drug | Clindamycin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Escherichia coli TOP10 | 83333 | ||
Staphylococcus aureus ATCC 29213 | 1280 | |||
Streptococcus agalactiae UCN70 | 1311 | |||
Streptococcus agalactiae isolates | 1311 | |||
Streptococcus agalactiae BM132 | 1319 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay; Allelic frequency measurement assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | Expression of this novel gene, named lsa(C), in S. agalactiae BM132 after cloning led to an increase in MICs of lincomycin (0.06 to 4 ug/ml), clindamycin (0.03 to 2 ug/ml), dalfopristin (2 to >32 ug/ml), and tiamulin (0.12 to 32 ug/ml), whereas no change in MICs of erythromycin (0.06 ug/ml), azithromycin (0.03 ug/ml), spiramycin (0.25 ug/ml), telithromycin (0.03 ug/ml), and quinupristin (8 ug/ml) was observed. The phenotype was renamed the LS(A)P phenotype on the basis of cross-resistance to lincosamides, streptogramins A, and pleuromutilins. |
Colistin
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Key Molecule: Multifunctional fusion protein (LPXA) | [3], [4] | |||
Resistant Disease | Acinetobacter baumannii infection [ICD-11: CA40.4] | |||
Molecule Alteration | Frameshift mutation | c.90del |
||
Resistant Drug | Colistin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Acinetobacter baumannii ATCC 19606 | 575584 | ||
Acinetobacter baumannii FADDI008 | 470 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | A critical first step in the action of polymyxins is the electrostatic interaction between the positively charged peptide and the negatively charged lipid A, the endotoxic component of lipopolysaccharide (LPS).A. baumannii type strain ATCC 19606, colistin-resistant variants contain mutations within genes essential for lipid A biosynthesis (either lpxA, lpxC, or lpxD) and that these strains have lost the ability to produce lipid A and therefore LPS. | |||
Key Molecule: Multifunctional fusion protein (LPXA) | [3], [4] | |||
Resistant Disease | Acinetobacter baumannii infection [ICD-11: CA40.4] | |||
Molecule Alteration | Missense mutation | p.H159D |
||
Resistant Drug | Colistin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Acinetobacter baumannii AL1844 | 470 | ||
Experiment for Molecule Alteration |
Whole genome sequence assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | A critical first step in the action of polymyxins is the electrostatic interaction between the positively charged peptide and the negatively charged lipid A, the endotoxic component of lipopolysaccharide (LPS).A. baumannii type strain ATCC 19606, colistin-resistant variants contain mutations within genes essential for lipid A biosynthesis (either lpxA, lpxC, or lpxD) and that these strains have lost the ability to produce lipid A and therefore LPS. | |||
Key Molecule: Multifunctional fusion protein (LPXA) | [3], [4] | |||
Resistant Disease | Acinetobacter baumannii infection [ICD-11: CA40.4] | |||
Molecule Alteration | Missense mutation | c.700C>T |
||
Resistant Drug | Colistin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Acinetobacter baumannii AL1845 | 470 | ||
Experiment for Molecule Alteration |
Whole genome sequence assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | A critical first step in the action of polymyxins is the electrostatic interaction between the positively charged peptide and the negatively charged lipid A, the endotoxic component of lipopolysaccharide (LPS).A. baumannii type strain ATCC 19606, colistin-resistant variants contain mutations within genes essential for lipid A biosynthesis (either lpxA, lpxC, or lpxD) and that these strains have lost the ability to produce lipid A and therefore LPS. | |||
Key Molecule: Multifunctional fusion protein (LPXA) | [3], [4] | |||
Resistant Disease | Acinetobacter baumannii infection [ICD-11: CA40.4] | |||
Molecule Alteration | Missense mutation | p.G68D |
||
Resistant Drug | Colistin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Acinetobacter baumannii AL1846 | 470 | ||
Experiment for Molecule Alteration |
Whole genome sequence assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | A critical first step in the action of polymyxins is the electrostatic interaction between the positively charged peptide and the negatively charged lipid A, the endotoxic component of lipopolysaccharide (LPS).A. baumannii type strain ATCC 19606, colistin-resistant variants contain mutations within genes essential for lipid A biosynthesis (either lpxA, lpxC, or lpxD) and that these strains have lost the ability to produce lipid A and therefore LPS. | |||
Key Molecule: Multifunctional fusion protein (LPXA) | [3], [4] | |||
Resistant Disease | Acinetobacter baumannii infection [ICD-11: CA40.4] | |||
Molecule Alteration | Frameshift mutation | c.391_421del |
||
Resistant Drug | Colistin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Acinetobacter baumannii ATCC 19606 | 575584 | ||
Acinetobacter baumannii FADDI008 | 470 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | A critical first step in the action of polymyxins is the electrostatic interaction between the positively charged peptide and the negatively charged lipid A, the endotoxic component of lipopolysaccharide (LPS).A. baumannii type strain ATCC 19606, colistin-resistant variants contain mutations within genes essential for lipid A biosynthesis (either lpxA, lpxC, or lpxD) and that these strains have lost the ability to produce lipid A and therefore LPS. | |||
Key Molecule: Multifunctional fusion protein (LPXA) | [3], [4] | |||
Resistant Disease | Acinetobacter baumannii infection [ICD-11: CA40.4] | |||
Molecule Alteration | Missense mutation | p.Q72K |
||
Resistant Drug | Colistin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Acinetobacter baumannii AL1848 | 470 | ||
Experiment for Molecule Alteration |
Whole genome sequence assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | A critical first step in the action of polymyxins is the electrostatic interaction between the positively charged peptide and the negatively charged lipid A, the endotoxic component of lipopolysaccharide (LPS).A. baumannii type strain ATCC 19606, colistin-resistant variants contain mutations within genes essential for lipid A biosynthesis (either lpxA, lpxC, or lpxD) and that these strains have lost the ability to produce lipid A and therefore LPS. | |||
Key Molecule: Multifunctional fusion protein (LPXA) | [3], [4] | |||
Resistant Disease | Acinetobacter baumannii infection [ICD-11: CA40.4] | |||
Molecule Alteration | Frameshift mutation | c.76_78del |
||
Resistant Drug | Colistin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Acinetobacter baumannii ATCC 19606 | 575584 | ||
Acinetobacter baumannii FADDI008 | 470 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | A critical first step in the action of polymyxins is the electrostatic interaction between the positively charged peptide and the negatively charged lipid A, the endotoxic component of lipopolysaccharide (LPS).A. baumannii type strain ATCC 19606, colistin-resistant variants contain mutations within genes essential for lipid A biosynthesis (either lpxA, lpxC, or lpxD) and that these strains have lost the ability to produce lipid A and therefore LPS. | |||
Key Molecule: Multifunctional fusion protein (LPXA) | [3], [4] | |||
Resistant Disease | Acinetobacter baumannii infection [ICD-11: CA40.4] | |||
Molecule Alteration | Frameshift mutation | c.364_809del |
||
Resistant Drug | Colistin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Acinetobacter baumannii ATCC 19606 | 575584 | ||
Acinetobacter baumannii FADDI008 | 470 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | A critical first step in the action of polymyxins is the electrostatic interaction between the positively charged peptide and the negatively charged lipid A, the endotoxic component of lipopolysaccharide (LPS).A. baumannii type strain ATCC 19606, colistin-resistant variants contain mutations within genes essential for lipid A biosynthesis (either lpxA, lpxC, or lpxD) and that these strains have lost the ability to produce lipid A and therefore LPS. |
Dalfopristin
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Irregularity in Drug Uptake and Drug Efflux (IDUE) | ||||
Key Molecule: ABC protein lsaC (lsaC-Unclear) | [2] | |||
Resistant Disease | Streptococcus agalactiae infection [ICD-11: 1B21.2] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Drug | Dalfopristin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Escherichia coli TOP10 | 83333 | ||
Staphylococcus aureus ATCC 29213 | 1280 | |||
Streptococcus agalactiae UCN70 | 1311 | |||
Streptococcus agalactiae isolates | 1311 | |||
Streptococcus agalactiae BM132 | 1319 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay; Allelic frequency measurement assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | Expression of this novel gene, named lsa(C), in S. agalactiae BM132 after cloning led to an increase in MICs of lincomycin (0.06 to 4 ug/ml), clindamycin (0.03 to 2 ug/ml), dalfopristin (2 to >32 ug/ml), and tiamulin (0.12 to 32 ug/ml), whereas no change in MICs of erythromycin (0.06 ug/ml), azithromycin (0.03 ug/ml), spiramycin (0.25 ug/ml), telithromycin (0.03 ug/ml), and quinupristin (8 ug/ml) was observed. The phenotype was renamed the LS(A)P phenotype on the basis of cross-resistance to lincosamides, streptogramins A, and pleuromutilins. |
Daptomycin
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Irregularity in Drug Uptake and Drug Efflux (IDUE) | ||||
Key Molecule: ATP-binding cassette transporter A (ABCA) | [5], [6], [7] | |||
Resistant Disease | Bacteremia [ICD-11: MA15.0] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Drug | Daptomycin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Escherichia coli TOP10 | 83333 | ||
Staphylococcus aureus MW2 | 1242971 | |||
In Vivo Model | Swiss webster male mice model | Mus musculus | ||
Experiment for Molecule Alteration |
Whole genome sequence assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | The ATP-dependent transporter gene abcA in Staphylococcus aureus confers resistance to hydrophobic Beta-lactams. | |||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Key Molecule: Cardiolipin synthase (CLS) | [8], [9], [10] | |||
Resistant Disease | Staphylococcus aureus infection [ICD-11: 1B54.0] | |||
Molecule Alteration | Missense mutation | p.H215R |
||
Resistant Drug | Daptomycin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Enterococcus faecalis S613 | 699185 | ||
Enterococcus faecium S447 | 1134840 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay | |||
Mechanism Description | Daptomycin (DAP) resistance in enterococci has been linked to mutations in genes that alter the cell envelope stress response (CESR) (liaFSR) and changes in enzymes that directly affect phospholipid homeostasis, and these changes may alter membrane composition, such as that of cardiolipin synthase (Cls).A comparison of the catalytic activities of E. faecium Cls447a to those of Cls447aH215R and Cls447aR218Q shows that mutations associated with DAP resistance increase Cls activity. | |||
Key Molecule: Cardiolipin synthase 2 (CLS2) | [11] | |||
Resistant Disease | Staphylococcus aureus infection [ICD-11: 1B54.0] | |||
Molecule Alteration | Missense mutation | p.A23V+p.T33N+p.L52F+p.F60S |
||
Resistant Drug | Daptomycin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Staphylococcus aureus isolates | 1280 | ||
Staphylococcus aureus MRSA32 [A5948] | 553567 | |||
Staphylococcus aureus RN6607 [A8115] | 553573 | |||
Staphylococcus aureus RN9120 [A8117] | 553574 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay; Allelic frequency measurement assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | Mutation in each of these genes act similarly to reduce the net-negative charge of the cell membrane leading to electrorepulsion of daptomycin. They may act in isolation or in concert with each other, particularly for mutations in mprF and cls2. | |||
Key Molecule: Phosphatidylglycerophosphate synthase (PGSA) | [11] | |||
Resistant Disease | Staphylococcus aureus infection [ICD-11: 1B54.0] | |||
Molecule Alteration | Missense mutation | p.V59D+p.A64V+p.K75N+p.Ins.G76;Q77+p.S177F |
||
Resistant Drug | Daptomycin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Staphylococcus aureus isolates | 1280 | ||
Staphylococcus aureus MRSA32 [A5948] | 553567 | |||
Staphylococcus aureus RN6607 [A8115] | 553573 | |||
Staphylococcus aureus RN9120 [A8117] | 553574 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay; Allelic frequency measurement assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | Mutation in each of these genes act similarly to reduce the net-negative charge of the cell membrane leading to electrorepulsion of daptomycin. They may act in isolation or in concert with each other, particularly for mutations in mprF and cls2. | |||
Key Molecule: DUF2154 domain-containing protein (LIAF) | [8] | |||
Resistant Disease | Bacteremia [ICD-11: MA15.0] | |||
Molecule Alteration | Frameshift mutation | p.170Idel |
||
Resistant Drug | Daptomycin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Enterococcus faecalis S613 | 699185 | ||
Enterococcus faecalis R712 | 699186 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay; Allelic frequency measurement assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | The daptomycin-resistant isolate - had changes in the structure of the cell envelope and alterations in membrane permeability and membrane potential. | |||
Key Molecule: DUF2154 domain-containing protein/Glycerophosphoryl diester phosphodiesterase family protein (LIAF/GDPD) | [8] | |||
Resistant Disease | Bacteremia [ICD-11: MA15.0] | |||
Molecule Alteration | Frameshift mutation | liaF p.170Idel +gdpD p.177ldel |
||
Resistant Drug | Daptomycin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Enterococcus faecalis S613 | 699185 | ||
Enterococcus faecalis R712 | 699186 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay; Allelic frequency measurement assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | The daptomycin-resistant isolate - had changes in the structure of the cell envelope and alterations in membrane permeability and membrane potential. |
Erythromycin
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Irregularity in Drug Uptake and Drug Efflux (IDUE) | ||||
Key Molecule: Lincomycin resistance efflux pump (LMRS) | [1] | |||
Resistant Disease | Staphylococcus aureus infection [ICD-11: 1B54.0] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Drug | Erythromycin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Escherichia coli kAM32 | 562 | ||
Staphylococcus aureus OM505 | 1280 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay; Allelic frequency measurement assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | LmrS is a multidrug efflux pump of the major facilitator superfamily from staphylococcus aureus. |
Florfenicol
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Irregularity in Drug Uptake and Drug Efflux (IDUE) | ||||
Key Molecule: Lincomycin resistance efflux pump (LMRS) | [1] | |||
Resistant Disease | Staphylococcus aureus infection [ICD-11: 1B54.0] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Drug | Florfenicol | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Escherichia coli kAM32 | 562 | ||
Staphylococcus aureus OM505 | 1280 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay; Allelic frequency measurement assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | LmrS is a multidrug efflux pump of the major facilitator superfamily from staphylococcus aureus. |
Kanamycin
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Irregularity in Drug Uptake and Drug Efflux (IDUE) | ||||
Key Molecule: Lincomycin resistance efflux pump (LMRS) | [1] | |||
Resistant Disease | Staphylococcus aureus infection [ICD-11: 1B54.0] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Drug | Kanamycin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Escherichia coli kAM32 | 562 | ||
Staphylococcus aureus OM505 | 1280 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay; Allelic frequency measurement assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | LmrS is a multidrug efflux pump of the major facilitator superfamily from staphylococcus aureus. |
Lincomycin
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Irregularity in Drug Uptake and Drug Efflux (IDUE) | ||||
Key Molecule: ABC protein lsaC (lsaC-Unclear) | [2] | |||
Resistant Disease | Streptococcus agalactiae infection [ICD-11: 1B21.2] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Drug | Lincomycin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Escherichia coli TOP10 | 83333 | ||
Staphylococcus aureus ATCC 29213 | 1280 | |||
Streptococcus agalactiae UCN70 | 1311 | |||
Streptococcus agalactiae isolates | 1311 | |||
Streptococcus agalactiae BM132 | 1319 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay; Allelic frequency measurement assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | Expression of this novel gene, named lsa(C), in S. agalactiae BM132 after cloning led to an increase in MICs of lincomycin (0.06 to 4 ug/ml), clindamycin (0.03 to 2 ug/ml), dalfopristin (2 to >32 ug/ml), and tiamulin (0.12 to 32 ug/ml), whereas no change in MICs of erythromycin (0.06 ug/ml), azithromycin (0.03 ug/ml), spiramycin (0.25 ug/ml), telithromycin (0.03 ug/ml), and quinupristin (8 ug/ml) was observed. The phenotype was renamed the LS(A)P phenotype on the basis of cross-resistance to lincosamides, streptogramins A, and pleuromutilins. |
Linezolid
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Irregularity in Drug Uptake and Drug Efflux (IDUE) | ||||
Key Molecule: Lincomycin resistance efflux pump (LMRS) | [1] | |||
Resistant Disease | Staphylococcus aureus infection [ICD-11: 1B54.0] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Drug | Linezolid | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Escherichia coli kAM32 | 562 | ||
Staphylococcus aureus OM505 | 1280 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay; Allelic frequency measurement assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | LmrS is a multidrug efflux pump of the major facilitator superfamily from staphylococcus aureus. |
Streptomycin
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Irregularity in Drug Uptake and Drug Efflux (IDUE) | ||||
Key Molecule: Lincomycin resistance efflux pump (LMRS) | [1] | |||
Resistant Disease | Staphylococcus aureus infection [ICD-11: 1B54.0] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Drug | Streptomycin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Escherichia coli kAM32 | 562 | ||
Staphylococcus aureus OM505 | 1280 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay; Allelic frequency measurement assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | LmrS is a multidrug efflux pump of the major facilitator superfamily from staphylococcus aureus. |
Tiamulin
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Irregularity in Drug Uptake and Drug Efflux (IDUE) | ||||
Key Molecule: ABC protein lsaC (lsaC-Unclear) | [2] | |||
Resistant Disease | Streptococcus agalactiae infection [ICD-11: 1B21.2] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Drug | Tiamulin | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Escherichia coli TOP10 | 83333 | ||
Staphylococcus aureus ATCC 29213 | 1280 | |||
Streptococcus agalactiae UCN70 | 1311 | |||
Streptococcus agalactiae isolates | 1311 | |||
Streptococcus agalactiae BM132 | 1319 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay; Allelic frequency measurement assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | Expression of this novel gene, named lsa(C), in S. agalactiae BM132 after cloning led to an increase in MICs of lincomycin (0.06 to 4 ug/ml), clindamycin (0.03 to 2 ug/ml), dalfopristin (2 to >32 ug/ml), and tiamulin (0.12 to 32 ug/ml), whereas no change in MICs of erythromycin (0.06 ug/ml), azithromycin (0.03 ug/ml), spiramycin (0.25 ug/ml), telithromycin (0.03 ug/ml), and quinupristin (8 ug/ml) was observed. The phenotype was renamed the LS(A)P phenotype on the basis of cross-resistance to lincosamides, streptogramins A, and pleuromutilins. |
Trimethoprim
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Irregularity in Drug Uptake and Drug Efflux (IDUE) | ||||
Key Molecule: Lincomycin resistance efflux pump (LMRS) | [1] | |||
Resistant Disease | Staphylococcus aureus infection [ICD-11: 1B54.0] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Drug | Trimethoprim | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Escherichia coli kAM32 | 562 | ||
Staphylococcus aureus OM505 | 1280 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay; Allelic frequency measurement assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | LmrS is a multidrug efflux pump of the major facilitator superfamily from staphylococcus aureus. |
Investigative Drug(s)
1 drug(s) in total
Moenomycin A
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Irregularity in Drug Uptake and Drug Efflux (IDUE) | ||||
Key Molecule: ATP-binding cassette transporter A (ABCA) | [5], [6], [7] | |||
Resistant Disease | Bacteremia [ICD-11: MA15.0] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Drug | Moenomycin A | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Escherichia coli TOP10 | 83333 | ||
Staphylococcus aureus MW2 | 1242971 | |||
In Vivo Model | Swiss webster male mice model | Mus musculus | ||
Experiment for Molecule Alteration |
Whole genome sequence assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | The ATP-dependent transporter gene abcA in Staphylococcus aureus confers resistance to hydrophobic Beta-lactams. |
References
If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.