General Information of the Disease (ID: DIS00120)
Name
Infective endocarditis
ICD
ICD-11: BB40
Resistance Map
Type(s) of Resistant Mechanism of This Disease
  DISM: Drug Inactivation by Structure Modification
  IDUE: Irregularity in Drug Uptake and Drug Efflux
Drug Resistance Data Categorized by Drug
Approved Drug(s)
15 drug(s) in total
Click to Show/Hide the Full List of Drugs
Chloramphenicol
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Key Molecule: Lincomycin resistance efflux pump (LMRS) [1]
Resistant Disease Staphylococcus aureus infection [ICD-11: 1B54.0]
Molecule Alteration Expression
Up-regulation
Resistant Drug Chloramphenicol
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli kAM32 562
Staphylococcus aureus OM505 1280
Experiment for
Molecule Alteration
Whole genome sequence assay; Allelic frequency measurement assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description LmrS is a multidrug efflux pump of the major facilitator superfamily from staphylococcus aureus.
Clindamycin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Key Molecule: ABC protein lsaC (lsaC-Unclear) [2]
Resistant Disease Streptococcus agalactiae infection [ICD-11: 1B21.2]
Molecule Alteration Expression
Up-regulation
Resistant Drug Clindamycin
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli TOP10 83333
Staphylococcus aureus ATCC 29213 1280
Streptococcus agalactiae UCN70 1311
Streptococcus agalactiae isolates 1311
Streptococcus agalactiae BM132 1319
Experiment for
Molecule Alteration
Whole genome sequence assay; Allelic frequency measurement assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Expression of this novel gene, named lsa(C), in S. agalactiae BM132 after cloning led to an increase in MICs of lincomycin (0.06 to 4 ug/ml), clindamycin (0.03 to 2 ug/ml), dalfopristin (2 to >32 ug/ml), and tiamulin (0.12 to 32 ug/ml), whereas no change in MICs of erythromycin (0.06 ug/ml), azithromycin (0.03 ug/ml), spiramycin (0.25 ug/ml), telithromycin (0.03 ug/ml), and quinupristin (8 ug/ml) was observed. The phenotype was renamed the LS(A)P phenotype on the basis of cross-resistance to lincosamides, streptogramins A, and pleuromutilins.
Dalfopristin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Key Molecule: ABC protein lsaC (lsaC-Unclear) [2]
Resistant Disease Streptococcus agalactiae infection [ICD-11: 1B21.2]
Molecule Alteration Expression
Up-regulation
Resistant Drug Dalfopristin
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli TOP10 83333
Staphylococcus aureus ATCC 29213 1280
Streptococcus agalactiae UCN70 1311
Streptococcus agalactiae isolates 1311
Streptococcus agalactiae BM132 1319
Experiment for
Molecule Alteration
Whole genome sequence assay; Allelic frequency measurement assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Expression of this novel gene, named lsa(C), in S. agalactiae BM132 after cloning led to an increase in MICs of lincomycin (0.06 to 4 ug/ml), clindamycin (0.03 to 2 ug/ml), dalfopristin (2 to >32 ug/ml), and tiamulin (0.12 to 32 ug/ml), whereas no change in MICs of erythromycin (0.06 ug/ml), azithromycin (0.03 ug/ml), spiramycin (0.25 ug/ml), telithromycin (0.03 ug/ml), and quinupristin (8 ug/ml) was observed. The phenotype was renamed the LS(A)P phenotype on the basis of cross-resistance to lincosamides, streptogramins A, and pleuromutilins.
Dibekacin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [3]
Resistant Disease Infective endocarditis [ICD-11: BB40.0]
Molecule Alteration Expression
Up-regulation
Resistant Drug Dibekacin
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
Erythromycin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Key Molecule: Lincomycin resistance efflux pump (LMRS) [1]
Resistant Disease Staphylococcus aureus infection [ICD-11: 1B54.0]
Molecule Alteration Expression
Up-regulation
Resistant Drug Erythromycin
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli kAM32 562
Staphylococcus aureus OM505 1280
Experiment for
Molecule Alteration
Whole genome sequence assay; Allelic frequency measurement assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description LmrS is a multidrug efflux pump of the major facilitator superfamily from staphylococcus aureus.
Florfenicol
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Key Molecule: Lincomycin resistance efflux pump (LMRS) [1]
Resistant Disease Staphylococcus aureus infection [ICD-11: 1B54.0]
Molecule Alteration Expression
Up-regulation
Resistant Drug Florfenicol
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli kAM32 562
Staphylococcus aureus OM505 1280
Experiment for
Molecule Alteration
Whole genome sequence assay; Allelic frequency measurement assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description LmrS is a multidrug efflux pump of the major facilitator superfamily from staphylococcus aureus.
Gentamicin A
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [3]
Resistant Disease Infective endocarditis [ICD-11: BB40.0]
Molecule Alteration Expression
Up-regulation
Resistant Drug Gentamicin A
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
Kanamycin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [3]
Resistant Disease Infective endocarditis [ICD-11: BB40.0]
Molecule Alteration Expression
Up-regulation
Resistant Drug Kanamycin
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Key Molecule: Lincomycin resistance efflux pump (LMRS) [1]
Resistant Disease Staphylococcus aureus infection [ICD-11: 1B54.0]
Molecule Alteration Expression
Up-regulation
Resistant Drug Kanamycin
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli kAM32 562
Staphylococcus aureus OM505 1280
Experiment for
Molecule Alteration
Whole genome sequence assay; Allelic frequency measurement assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description LmrS is a multidrug efflux pump of the major facilitator superfamily from staphylococcus aureus.
Lincomycin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Key Molecule: ABC protein lsaC (lsaC-Unclear) [2]
Resistant Disease Streptococcus agalactiae infection [ICD-11: 1B21.2]
Molecule Alteration Expression
Up-regulation
Resistant Drug Lincomycin
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli TOP10 83333
Staphylococcus aureus ATCC 29213 1280
Streptococcus agalactiae UCN70 1311
Streptococcus agalactiae isolates 1311
Streptococcus agalactiae BM132 1319
Experiment for
Molecule Alteration
Whole genome sequence assay; Allelic frequency measurement assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Expression of this novel gene, named lsa(C), in S. agalactiae BM132 after cloning led to an increase in MICs of lincomycin (0.06 to 4 ug/ml), clindamycin (0.03 to 2 ug/ml), dalfopristin (2 to >32 ug/ml), and tiamulin (0.12 to 32 ug/ml), whereas no change in MICs of erythromycin (0.06 ug/ml), azithromycin (0.03 ug/ml), spiramycin (0.25 ug/ml), telithromycin (0.03 ug/ml), and quinupristin (8 ug/ml) was observed. The phenotype was renamed the LS(A)P phenotype on the basis of cross-resistance to lincosamides, streptogramins A, and pleuromutilins.
Linezolid
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Key Molecule: Lincomycin resistance efflux pump (LMRS) [1]
Resistant Disease Staphylococcus aureus infection [ICD-11: 1B54.0]
Molecule Alteration Expression
Up-regulation
Resistant Drug Linezolid
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli kAM32 562
Staphylococcus aureus OM505 1280
Experiment for
Molecule Alteration
Whole genome sequence assay; Allelic frequency measurement assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description LmrS is a multidrug efflux pump of the major facilitator superfamily from staphylococcus aureus.
Sisomicin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [3]
Resistant Disease Infective endocarditis [ICD-11: BB40.0]
Molecule Alteration Expression
Up-regulation
Resistant Drug Sisomicin
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
Streptomycin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Key Molecule: Lincomycin resistance efflux pump (LMRS) [1]
Resistant Disease Staphylococcus aureus infection [ICD-11: 1B54.0]
Molecule Alteration Expression
Up-regulation
Resistant Drug Streptomycin
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli kAM32 562
Staphylococcus aureus OM505 1280
Experiment for
Molecule Alteration
Whole genome sequence assay; Allelic frequency measurement assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description LmrS is a multidrug efflux pump of the major facilitator superfamily from staphylococcus aureus.
Tiamulin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Key Molecule: ABC protein lsaC (lsaC-Unclear) [2]
Resistant Disease Streptococcus agalactiae infection [ICD-11: 1B21.2]
Molecule Alteration Expression
Up-regulation
Resistant Drug Tiamulin
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli TOP10 83333
Staphylococcus aureus ATCC 29213 1280
Streptococcus agalactiae UCN70 1311
Streptococcus agalactiae isolates 1311
Streptococcus agalactiae BM132 1319
Experiment for
Molecule Alteration
Whole genome sequence assay; Allelic frequency measurement assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Expression of this novel gene, named lsa(C), in S. agalactiae BM132 after cloning led to an increase in MICs of lincomycin (0.06 to 4 ug/ml), clindamycin (0.03 to 2 ug/ml), dalfopristin (2 to >32 ug/ml), and tiamulin (0.12 to 32 ug/ml), whereas no change in MICs of erythromycin (0.06 ug/ml), azithromycin (0.03 ug/ml), spiramycin (0.25 ug/ml), telithromycin (0.03 ug/ml), and quinupristin (8 ug/ml) was observed. The phenotype was renamed the LS(A)P phenotype on the basis of cross-resistance to lincosamides, streptogramins A, and pleuromutilins.
Tobramycin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [3]
Resistant Disease Infective endocarditis [ICD-11: BB40.0]
Molecule Alteration Expression
Up-regulation
Resistant Drug Tobramycin
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
Trimethoprim
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Key Molecule: Lincomycin resistance efflux pump (LMRS) [1]
Resistant Disease Staphylococcus aureus infection [ICD-11: 1B54.0]
Molecule Alteration Expression
Up-regulation
Resistant Drug Trimethoprim
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli kAM32 562
Staphylococcus aureus OM505 1280
Experiment for
Molecule Alteration
Whole genome sequence assay; Allelic frequency measurement assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description LmrS is a multidrug efflux pump of the major facilitator superfamily from staphylococcus aureus.
References
Ref 1 LmrS is a multidrug efflux pump of the major facilitator superfamily from Staphylococcus aureus. Antimicrob Agents Chemother. 2010 Dec;54(12):5406-12. doi: 10.1128/AAC.00580-10. Epub 2010 Sep 20.
Ref 2 Cross-resistance to lincosamides, streptogramins A, and pleuromutilins due to the lsa(C) gene in Streptococcus agalactiae UCN70. Antimicrob Agents Chemother. 2011 Apr;55(4):1470-4. doi: 10.1128/AAC.01068-10. Epub 2011 Jan 18.
Ref 3 Novel aminoglycoside 2''-phosphotransferase identified in a gram-negative pathogen. Antimicrob Agents Chemother. 2013 Jan;57(1):452-7. doi: 10.1128/AAC.02049-12. Epub 2012 Nov 5.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.