Drug (ID: DG00086) and It's Reported Resistant Information
Name
Tobramycin
Synonyms
Aktob; Brulamycin; Distobram; Gotabiotic; NEBRAMYCIN; Nebcin; Nebicin; Obracin; Obramycin; Sybryx; TOY; Tenebrimycin;Tenemycin; Tobacin; Tobi; Tobracin; Tobradex; Tobradistin; Tobralex; Tobramaxin; Tobramicin; Tobramicina; Tobramitsetin; Tobramycetin; Tobramycine; Tobramycinum; Tobrased; Tobrasone; Tobrex; Deoxykanamycin B; Nebramycin VI; TOBRAMYCIN SULFATE; Tobramycin for Inhalation; Tobramycin solution for inhalation; A 12253A; Lilly 47663; NF 6; Nebramycin 6; Nebramycin factir 6; Nebramycin factor 6; Nebcin (Sulfate); SPRC-AB01; TobraDex (TN); Tobracin (TN); Tobramicina [INN-Spanish]; Tobramycin, Free Base; Tobramycine [INN-French]; Tobramycinum [INN-Latin]; Tobrex (TN); Tobramycin (JP15/USP); Tobramycin[USAN:BAN:INN:JAN]; TOA-(1-6)2TB-(4-1)TOC; TOA-(1-6)TOB-(4-1)TOC; 1-Epitobramycin; 3'-Deoxykanamycin B
    Click to Show/Hide
Indication
In total 1 Indication(s)
Bacterial infection [ICD-11: 1A00-1C4Z]
Approved
[1]
Structure
Drug Resistance Disease(s)
Disease(s) with Clinically Reported Resistance for This Drug (12 diseases)
Bacterial genitourinary infection [ICD-11: GA0Z-GC8Z]
[2]
Bacterial infection [ICD-11: 1A00-1C4Z]
[3], [4]
Corneal ulcer [ICD-11: 9A76]
[5], [6]
Escherichia coli intestinal infection [ICD-11: 1A03]
[7]
Folliculitis [ICD-11: 1B74]
[5], [6]
Gram-negative bacterial infection [ICD-11: 1B74-1G40]
[2]
Infective endocarditis [ICD-11: BB40]
[2]
Mycobacterial diseases [ICD-11: 1B2Z ]
[8]
Otitis media [ICD-11: AA80]
[5], [6]
Peritonitis [ICD-11: DC50]
[2]
Respiratory trac infection [ICD-11: CA45]
[2]
Sepsis [ICD-11: 1G40]
[2]
Disease(s) with Resistance Information Validated by in-vivo Model for This Drug (3 diseases)
Bacterial infection [ICD-11: 1A00-1C4Z]
[1]
Escherichia coli intestinal infection [ICD-11: 1A03]
[9]
Mycobacterial diseases [ICD-11: 1B2Z ]
[10]
Target Bacterial 30S ribosomal RNA (Bact 30S rRNA) NOUNIPROTAC [1]
Click to Show/Hide the Molecular Information and External Link(s) of This Drug
Formula
C18H37N5O9
IsoSMILES
C1[C@@H]([C@H]([C@@H]([C@H]([C@@H]1N)O[C@@H]2[C@@H]([C@H]([C@@H]([C@H](O2)CO)O)N)O)O)O[C@@H]3[C@@H](C[C@@H]([C@H](O3)CN)O)N)N
InChI
1S/C18H37N5O9/c19-3-9-8(25)2-7(22)17(29-9)31-15-5(20)1-6(21)16(14(15)28)32-18-13(27)11(23)12(26)10(4-24)30-18/h5-18,24-28H,1-4,19-23H2/t5-,6+,7+,8-,9+,10+,11-,12+,13+,14-,15+,16-,17+,18+/m0/s1
InChIKey
NLVFBUXFDBBNBW-PBSUHMDJSA-N
PubChem CID
36294
ChEBI ID
CHEBI:28864
TTD Drug ID
D07BCT
INTEDE ID
DR1606
DrugBank ID
DB00684
Type(s) of Resistant Mechanism of This Drug
  ADTT: Aberration of the Drug's Therapeutic Target
  DISM: Drug Inactivation by Structure Modification
  UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Their Corresponding Diseases
ICD-01: Infectious/parasitic diseases
Click to Show/Hide the Resistance Disease of This Class
Bacterial infection [ICD-11: 1A00-1C4Z]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Aberration of the Drug's Therapeutic Target (ADTT) Click to Show/Hide
Key Molecule: 16S rRNA (guanine(1405)-N(7))-methyltransferase (RMTA) [11]
Molecule Alteration Expression
Intergeneric lateral gene transfer
Resistant Disease Pseudomonas aeruginosa infection [ICD-11: 1A00-1C4Z]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Pseudomonas aeruginosa AR-2 287
Experiment for
Molecule Alteration
PCR screening assay
Experiment for
Drug Resistance
Agar dilution method assay
Mechanism Description The 16S rRNA methylase gene has undergone intergeneric horizontal gene transfer from some aminoglycoside producing microorganisms to Pseudomonas aeruginosa, which is called rmtA. rmtA protect bacterial 16S rRNA from intrinsic aminoglycosides by methylation.
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: AacA43 aminoglycoside (AACA43) [12]
Molecule Alteration Expression
Up-regulation
Resistant Disease Bacterial infection [ICD-11: 1A00-1C4Z]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Klebsiella pneumoniae LT12 573
Klebsiella pneumoniae SSI2.46 573
Experiment for
Molecule Alteration
Whole genome sequence assay; Allelic frequency measurement assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Like related aminoglycoside-(6')-acetyltransferases, AacA43 confers clinically relevant resistance to kanamycin, tobramycin, and some less-used aminoglycosides but not to gentamicin.
Key Molecule: Aminoglycoside N(3)-acetyltransferase (AACC2) [5], [6]
Molecule Alteration Expression
Up-regulation
Resistant Disease Bacterial infection [ICD-11: 1A00-1C4Z]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli ATCC 25922 1322345
Pseudomonas aeruginosa ATCC 27853 287
Pseudomonas aeruginosa isolates 287
Staphylococcus aureus ATCC 25923 1280
Experiment for
Molecule Alteration
Whole genome sequence assay
Experiment for
Drug Resistance
Agar dilution method assay
Mechanism Description Various aminoglycoside modifying enzymes were associated with overlapping phenotypes: 36.5% strains produced AAC(6')-I with either a serine (GEN-TOB-NET) or a leucine (TOB-NET-AMk) at position 119, or both variants (GEN-TOB-NET-AMk); 21.2% expressed ANT(2")-I (GEN-TOB), 7.7% AAC(3)-II (GEN-TOB-NET), 5.8% AAC(3)-I (GEN) and 1.9% AAC(6')-II (GEN-TOB-NET-AMk) or AACA7 (TOB-NET-AMk).
Key Molecule: Aminoglycoside adenyltransferase 2''-Ia (ANT2I) [13], [14]
Molecule Alteration Expression
Up-regulation
Resistant Disease Bacterial infection [ICD-11: 1A00-1C4Z]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Acinetobacter baumannii AB5075 1116234
Experiment for
Molecule Alteration
Whole genome sequence assay
Experiment for
Drug Resistance
Etest assay
Mechanism Description ANT(2")-Ia confers resistance by magnesium-dependent transfer of a nucleoside monophosphate (AMP) to the 2"-hydroxyl of aminoglycoside substrates containing a 2-deoxystreptamine core.
Key Molecule: Aminoglycoside N(6')-acetyltransferase type 1 (A6AC1) [15]
Molecule Alteration Expression
Up-regulation
Resistant Disease Bacterial infection [ICD-11: 1A00-1C4Z]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Pseudomonas aeruginosa PAO1 208964
Pseudomonas aeruginosa Nk0001 287
Pseudomonas aeruginosa Nk0002 287
Pseudomonas aeruginosa Nk0003 287
Pseudomonas aeruginosa Nk0004 287
Pseudomonas aeruginosa Nk0005 287
Pseudomonas aeruginosa Nk0006 287
Pseudomonas aeruginosa Nk0007 287
Pseudomonas aeruginosa Nk0008 287
Pseudomonas aeruginosa Nk0009 287
Experiment for
Molecule Alteration
Whole genome sequence assay; Allelic frequency measurement assay
Experiment for
Drug Resistance
Micro-dilution method assay
Mechanism Description Recombinant AAC(6')-Iag protein showed aminoglycoside 6'-N-acetyltransferase activity using thin-layer chromatography (TLC) and MS spectrometric analysis. Escherichia coli carrying aac(6')-Iag showed resistance to amikacin, arbekacin, dibekacin, isepamicin, kanamycin, sisomicin, and tobramycin; but not to gentamicin.AAC(6')-Iag is a functional acetyltransferase that modifies alternate amino groups on the AGs.
Key Molecule: Aminoglycoside acetyltransferase (AAC) [16]
Molecule Alteration Expression
Inherence
Resistant Disease Pseudomonas aeruginosa infection [ICD-11: 1A00-1C4Z]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli DH5alpha 668369
Experiment for
Molecule Alteration
PCR mapping and sequencing assay
Experiment for
Drug Resistance
Macrodilution broth method assay
Mechanism Description Aac(3)-Ic gene could contribute to aminoglycoside resistance with a pattern typical of AAC(3)-I enzymes.
Key Molecule: AAC(6')-Ib family aminoglycoside 6'-N-acetyltransferase (AAC6IB) [17]
Molecule Alteration Expression
Inherence
Resistant Disease Pseudomonas aeruginosa infection [ICD-11: 1A00-1C4Z]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli DH10B 316385
Escherichia coli HB101 634468
Pseudomonas aeruginosa ATCC 27853 287
Escherichia coli JM109 562
Escherichia coli k-12 83333
Pseudomonas aeruginosa Pa695 287
Experiment for
Molecule Alteration
PCR experiments assay
Experiment for
Drug Resistance
Disk diffusion method assay
Mechanism Description The fusion product was functional, as was the product of each gene cloned separately: AAC(3)-I, despite the deletion of the four last amino acids, and AAC(6"), which carried three amino acid changes compared with the most homologous sequence. The AAC(3)-I protein conferred an expected gentamicin and fortimicin resistance, and the AAC(6"), despite the Leu-119-Ser substitution, yielded resistance to kanamycin, tobramycin, and dibekacin, but slightly affected netilmicin and amikacin, and had no apparent effect on gentamicin. The fusion product conveyed a large profile of resistance, combining the AAC(6") activity with a higher level of gentamicin resistance without accompanying fortimicin resistance.
Key Molecule: Acetylpolyamine amidohydrolase (APAH) [18]
Molecule Alteration Expression
Inherence
Resistant Disease Achromobacter xylosoxydans infection [ICD-11: 1A00-1C4Z]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Achromobacter xylosoxydans subsp. denitrificans AX-22 85698
Escherichia coli MkD-135 562
Pseudomonas aeruginosa 10145/3 287
Experiment for
Molecule Alteration
DNA extraction and Sequencing assay
Experiment for
Drug Resistance
Macrodilution broth method assay
Mechanism Description The aphA15 gene is the first example of an aph-like gene carried on a mobile gene cassette, and its product exhibits close similarity to the APH(3')-IIa aminoglycoside phosphotransferase encoded by Tn5 (36% amino acid identity) and to an APH(3')-IIb enzyme from Pseudomonas aeruginosa (38% amino acid identity). Expression of the cloned aphA15 gene in Escherichia coli reduced the susceptibility to kanamycin and neomycin as well as (slightly) to amikacin, netilmicin, and streptomycin.
Key Molecule: Aminoglycoside N(6')-acetyltransferase type 1 (A6AC1) [3], [4]
Molecule Alteration Expression
Up-regulation
Resistant Disease Bacterial infection [ICD-11: 1A00-1C4Z]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli JM83 562
Escherichia coli strain k802N 562
Pseudomonas aeruginosa strain BM2692 287
Pseudomonas aeruginosa strain BM2693 287
Pseudomonas aeruginosa strain BM2694 287
Pseudomonas aeruginosa strain BM2695 287
Pseudomonas fluorescens strain BM2687 294
Pseudomonas fluorescens strain BM2687-1 294
Pseudomonas fluorescens strain BM2687-2 294
Experiment for
Molecule Alteration
Whole genome sequence assay
Experiment for
Drug Resistance
Disk diffusion test assay; E-strip test assay
Mechanism Description The aac(6')-Ib' gene from Pseudomonas fluorescens BM2687, encoding an aminoglycoside 6'-N-acetyltransferase type II which confers resistance to gentamicin but not to amikacin, was characterized.
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Key Molecule: Chaperone protein ClpB (CLPB) [1]
Molecule Alteration Expression
Up-regulation
Resistant Disease Pseudomonas aeruginosa infection [ICD-11: 1A00-1C4Z]
Experimental Note Discovered Using In-vivo Testing Model
In Vitro Model Pseudomonas aeruginosa MPAO1 1131757
Experiment for
Molecule Alteration
SRM analysis
Experiment for
Drug Resistance
MIC assay
Mechanism Description The extracellular polysaccharide layer of biofilm can prolong the time of bactericide penetration into the central cell cluster. The proteomic response of Pseudomonas aeruginosa depends on the level of tobramycin experienced by the cells after exposure to various sub inhibitory levels (0.1-1) u Tobramycin (g / ml) can induce different proteins. Bacterial cells exposed to low levels of tobramycin showed elevated levels of enzymes that metabolize and synthesize amino acids that may alter drug sensitivity. Inactivation of ibpA did not yield significant tobramycin MIC changes. However, inactivation of two heat shock proteins/proteases ibpA/clpB, ibpA/PA0779, or ibpA/hslV led to increased tobramycin sensitivity changes in P. aeruginosa.
Key Molecule: ATP-dependent protease subunit HslV (HSlV) [1]
Molecule Alteration Expression
Up-regulation
Resistant Disease Pseudomonas aeruginosa infection [ICD-11: 1A00-1C4Z]
Experimental Note Discovered Using In-vivo Testing Model
In Vitro Model Pseudomonas aeruginosa MPAO1 1131757
Experiment for
Molecule Alteration
SRM analysis
Experiment for
Drug Resistance
MIC assay
Mechanism Description The extracellular polysaccharide layer of biofilm can prolong the time of bactericide penetration into the central cell cluster. The proteomic response of Pseudomonas aeruginosa depends on the level of tobramycin experienced by the cells after exposure to various sub inhibitory levels (0.1-1) u Tobramycin (g / ml) can induce different proteins. Bacterial cells exposed to low levels of tobramycin showed elevated levels of enzymes that metabolize and synthesize amino acids that may alter drug sensitivity. Inactivation of ibpA did not yield significant tobramycin MIC changes. However, inactivation of two heat shock proteins/proteases ibpA/clpB, ibpA/PA0779, or ibpA/hslV led to increased tobramycin sensitivity changes in P. aeruginosa.
Key Molecule: Heat-shock protein IbpA (IBPA) [1]
Molecule Alteration Expression
Up-regulation
Resistant Disease Pseudomonas aeruginosa infection [ICD-11: 1A00-1C4Z]
Experimental Note Discovered Using In-vivo Testing Model
In Vitro Model Pseudomonas aeruginosa MPAO1 1131757
Experiment for
Molecule Alteration
SRM analysis
Experiment for
Drug Resistance
MIC assay
Mechanism Description The extracellular polysaccharide layer of biofilm can prolong the time of bactericide penetration into the central cell cluster. The proteomic response of Pseudomonas aeruginosa depends on the level of tobramycin experienced by the cells after exposure to various sub inhibitory levels (0.1-1) u Tobramycin (g / ml) can induce different proteins. Bacterial cells exposed to low levels of tobramycin showed elevated levels of enzymes that metabolize and synthesize amino acids that may alter drug sensitivity. Inactivation of ibpA did not yield significant tobramycin MIC changes. However, inactivation of two heat shock proteins/proteases ibpA/clpB, ibpA/PA0779, or ibpA/hslV led to increased tobramycin sensitivity changes in P. aeruginosa.
Key Molecule: Lon protease (LON) [1]
Molecule Alteration Expression
Up-regulation
Resistant Disease Pseudomonas aeruginosa infection [ICD-11: 1A00-1C4Z]
Experimental Note Discovered Using In-vivo Testing Model
In Vitro Model Pseudomonas aeruginosa MPAO1 1131757
Experiment for
Molecule Alteration
SRM analysis
Experiment for
Drug Resistance
MIC assay
Mechanism Description The extracellular polysaccharide layer of biofilm can prolong the time of bactericide penetration into the central cell cluster. The proteomic response of Pseudomonas aeruginosa depends on the level of tobramycin experienced by the cells after exposure to various sub inhibitory levels (0.1-1) u Tobramycin (g / ml) can induce different proteins. Bacterial cells exposed to low levels of tobramycin showed elevated levels of enzymes that metabolize and synthesize amino acids that may alter drug sensitivity. Inactivation of ibpA did not yield significant tobramycin MIC changes. However, inactivation of two heat shock proteins/proteases ibpA/clpB, ibpA/PA0779, or ibpA/hslV led to increased tobramycin sensitivity changes in P. aeruginosa.
Escherichia coli intestinal infection [ICD-11: 1A03]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Aminoglycoside acetyltransferase (AAC) [7]
Molecule Alteration Expression
Inherence
Resistant Disease Escherichia coli infection [ICD-11: 1A03.0]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli DH5alpha 668369
Escherichia coli SCH92111602 562
Experiment for
Molecule Alteration
Dot blot hybridizations assay
Experiment for
Drug Resistance
Standard broth microdilution method assay
Mechanism Description Escherichia coli SCH92111602 expresses an aminoglycoside resistance profile similar to that conferred by the aac(6')-Ie-aph(2")-Ia gene found in gram-positive cocci and was found to contain the aminoglycoside resistance genes aph(2")-Ib and aac(6')-Im (only 44 nucleotides apart). SCH92111602 is an Escherichia coli clinical isolate resistant to a number of aminoglycoside antibiotics, including gentamicin, tobramycin, and amikacin, and contains an approximately 50-kb plasmid.
Key Molecule: Aminoglycoside acetyltransferase (AAC) [7]
Molecule Alteration Expression
Acquired
Resistant Disease Escherichia coli infection [ICD-11: 1A03.0]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli DH5alpha 668369
Escherichia coli SCH92111602 562
Experiment for
Molecule Alteration
Dot blot hybridizations assay
Experiment for
Drug Resistance
Standard broth microdilution method assay
Mechanism Description Plasmid DNA isolated from this strain was introduced into Escherichia coli DH5alpha by transformation, and colonies were selected on Luria-Bertani agar plates containing 10 ug of tobramycin per ml. Analysis of restriction digests on agarose gels of DNA from a tobramycin-resistant transformant confirmed the presence of the same 50-kb plasmid that was isolated from Escherichia coli SCH92111602.
Key Molecule: Aminoglycoside 2'-N-acetyltransferase (A2NA) [9]
Molecule Alteration Expression
Acquired
Resistant Disease Escherichia coli infection [ICD-11: 1A03.0]
Experimental Note Discovered Using In-vivo Testing Model
In Vitro Model Escherichia coli strain DH5a 668369
Escherichia coli strain XLI-Blue 562
Providencia stuartii strain PR50 588
Providencia stuartii strain SCH75082831A 588
Experiment for
Molecule Alteration
DNA sequencing assay
Experiment for
Drug Resistance
Microdilution plates assay
Mechanism Description E.coli DH5alpha/pR 1000 demonstrated an AAC(2')-Ia resistance profile,with gentamicin, tobramycin, netilmicin, and 6'-Nethylnetilmicin MICs increased over those seen with E.coli DH5alpha. In addition, E.coli DH5alpha/pR 1000 did not show an elevated 2'-N-ethylnetilmicin MIC (MIC was 0.25ug/ml). Therefore, pR1000 encoded an enzyme capable of acetylating 6'-N-ethylnetilmicin but not 2'-N-ethylnetilmicin, suggesting 2'-N-acetyltransferase activity. DH5alpha/pSCH4500, which contains a subcloned 1.3-kb fragment, also demonstrated an AAC(2')-Ia resistance profile.
Mycobacterial diseases [ICD-11: 1B2Z ]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Aminoglycoside 2'-N-acetyltransferase (A2NA) [10]
Molecule Alteration Expression
Acquired
Resistant Disease Mycobacterium smegmatis infection [ICD-11: 1B2Z.3]
Experimental Note Discovered Using In-vivo Testing Model
In Vitro Model Escherichia coli strain DH5a 668369
Mycolicibacterium smegmatis strain EP10 1772
Mycolicibacterium smegmatis strain mc2155 246196
Experiment for
Molecule Alteration
Southern blot hybridizations assay
Experiment for
Drug Resistance
Agar macrodilution assay
Mechanism Description The introduction of a plasmid-located copy of either the aac (2')-Ib or the aac (2')-Id genes into M. smegmatis mc2155 produces an increase in the level of resistance over those values observed in M. smegmatis mc2155. However, the introduction of the plasmid-located aac (2') Ic gene did not lead to an increase in the MICs. In this experiment, an increase of at least two dilutions in the MIC values over those observed in M. smegmatismc2155 with the vector pSUM36 has been assumed to be due to the increase in the activity of the AAC (2') enzyme. The MICs for the 2'-ethylnetilmicin do not change since this aminoglycoside is not a substrate of the AAC (2') enzyme.
Key Molecule: Aminoglycoside 2'-N-acetyltransferase (A2NA) [8]
Molecule Alteration Expression
Inherence
Resistant Disease Mycobacterium fortuitum infection [ICD-11: 1B2Z.2]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli XL1-Blue 562
Streptomyces lividans strain 1326 1200984
Mycolicibacterium fortuitum strain FC1k 1766
Mycolicibacterium smegmatis strain mc2 155 246196
Experiment for
Molecule Alteration
Southern blot hybridizations assay
Experiment for
Drug Resistance
Twofold dilution of antibiotics assay
Mechanism Description Thirty-four environmental and clinical isolates belonging to theM. fortuitumcomplex were chosen for the present study. The MICs of gentamicin varied, ranging from 2 to 16mg/ml. Crude extracts of all 34 strains were shown to have AAC activity. Acetylation of gentamicin, tobramycin, and kanamycins A and B was found for all the strains, showing a substrate profile consistent with the presence of an AAC(3) activity. Environmental isolateM. fortuitumFC1k was chosen for further studies because of its high level of AAC activity and the level of resistance to gentamicin (MIC, 16mg/ml).
Key Molecule: Aminoglycoside 2'-N-acetyltransferase (A2NA) [8]
Molecule Alteration Expression
Acquired
Resistant Disease Mycobacterium smegmatis infection [ICD-11: 1B2Z.3]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli XL1-Blue 562
Streptomyces lividans strain 1326 1200984
Mycolicibacterium fortuitum strain FC1k 1766
Mycolicibacterium smegmatis strain mc2 155 246196
Experiment for
Molecule Alteration
Southern blot hybridizations assay
Experiment for
Drug Resistance
Twofold dilution of antibiotics assay
Mechanism Description The aac(2')-Ib gene cloned in a mycobacterial plasmid and introduced in Mycobacterium smegmatis conferred resistance to gentamicin, tobramycin, dibekacin, netilmicin, and 6'-N-ethylnetilmicin.
Folliculitis [ICD-11: 1B74]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Aminoglycoside N(3)-acetyltransferase (AACC2) [5], [6]
Molecule Alteration Expression
Up-regulation
Resistant Disease Folliculitis [ICD-11: 1B74.0]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli ATCC 25922 1322345
Pseudomonas aeruginosa ATCC 27853 287
Pseudomonas aeruginosa isolates 287
Staphylococcus aureus ATCC 25923 1280
Experiment for
Molecule Alteration
Whole genome sequence assay
Experiment for
Drug Resistance
Agar dilution method assay
Mechanism Description Various aminoglycoside modifying enzymes were associated with overlapping phenotypes: 36.5% strains produced AAC(6')-I with either a serine (GEN-TOB-NET) or a leucine (TOB-NET-AMk) at position 119, or both variants (GEN-TOB-NET-AMk); 21.2% expressed ANT(2")-I (GEN-TOB), 7.7% AAC(3)-II (GEN-TOB-NET), 5.8% AAC(3)-I (GEN) and 1.9% AAC(6')-II (GEN-TOB-NET-AMk) or AACA7 (TOB-NET-AMk).
Gram-negative bacterial infection [ICD-11: 1B74-1G40]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [2]
Molecule Alteration Expression
Up-regulation
Resistant Disease Gram-negative pathogens infection [ICD-11: 1B74-1G40]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
Sepsis [ICD-11: 1G40]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [2]
Molecule Alteration Expression
Up-regulation
Resistant Disease Sepsis [ICD-11: 1G40.0]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
ICD-09: Visual system diseases
Click to Show/Hide the Resistance Disease of This Class
Corneal ulcer [ICD-11: 9A76]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Aminoglycoside N(3)-acetyltransferase (AACC2) [5], [6]
Molecule Alteration Expression
Up-regulation
Resistant Disease Corneal ulcers [ICD-11: 9A76.0]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli ATCC 25922 1322345
Pseudomonas aeruginosa ATCC 27853 287
Pseudomonas aeruginosa isolates 287
Staphylococcus aureus ATCC 25923 1280
Experiment for
Molecule Alteration
Whole genome sequence assay
Experiment for
Drug Resistance
Agar dilution method assay
Mechanism Description Various aminoglycoside modifying enzymes were associated with overlapping phenotypes: 36.5% strains produced AAC(6')-I with either a serine (GEN-TOB-NET) or a leucine (TOB-NET-AMk) at position 119, or both variants (GEN-TOB-NET-AMk); 21.2% expressed ANT(2")-I (GEN-TOB), 7.7% AAC(3)-II (GEN-TOB-NET), 5.8% AAC(3)-I (GEN) and 1.9% AAC(6')-II (GEN-TOB-NET-AMk) or AACA7 (TOB-NET-AMk).
ICD-10: Ear/mastoid process diseasess
Click to Show/Hide the Resistance Disease of This Class
Otitis media [ICD-11: AA80]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Aminoglycoside N(3)-acetyltransferase (AACC2) [5], [6]
Molecule Alteration Expression
Up-regulation
Resistant Disease Pseudomonas aeruginosa infection [ICD-11: 1A00-1C4Z]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli ATCC 25922 1322345
Pseudomonas aeruginosa ATCC 27853 287
Pseudomonas aeruginosa isolates 287
Staphylococcus aureus ATCC 25923 1280
Experiment for
Molecule Alteration
Whole genome sequence assay
Experiment for
Drug Resistance
Agar dilution method assay
Mechanism Description Various aminoglycoside modifying enzymes were associated with overlapping phenotypes: 36.5% strains produced AAC(6')-I with either a serine (GEN-TOB-NET) or a leucine (TOB-NET-AMk) at position 119, or both variants (GEN-TOB-NET-AMk); 21.2% expressed ANT(2")-I (GEN-TOB), 7.7% AAC(3)-II (GEN-TOB-NET), 5.8% AAC(3)-I (GEN) and 1.9% AAC(6')-II (GEN-TOB-NET-AMk) or AACA7 (TOB-NET-AMk).
ICD-11: Circulatory system diseases
Click to Show/Hide the Resistance Disease of This Class
Infective endocarditis [ICD-11: BB40]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [2]
Molecule Alteration Expression
Up-regulation
Resistant Disease Infective endocarditis [ICD-11: BB40.0]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
ICD-12: Respiratory system diseases
Click to Show/Hide the Resistance Disease of This Class
Respiratory trac infection [ICD-11: CA45]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [2]
Molecule Alteration Expression
Up-regulation
Resistant Disease Respiratory trac infection [ICD-11: CA45.0]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
ICD-13: Digestive system diseases
Click to Show/Hide the Resistance Disease of This Class
Peritonitis [ICD-11: DC50]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [2]
Molecule Alteration Expression
Up-regulation
Resistant Disease Gram-negative pathogens infection [ICD-11: 1B74-1G40]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
ICD-16: Genitourinary system diseases
Click to Show/Hide the Resistance Disease of This Class
Bacterial genitourinary infection [ICD-11: GA0Z-GC8Z]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [2]
Molecule Alteration Expression
Up-regulation
Resistant Disease Gram-negative pathogens infection [ICD-11: 1B74-1G40]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
References
Ref 1 Dynamic Proteome Response of Pseudomonas aeruginosa to Tobramycin Antibiotic Treatment. Mol Cell Proteomics. 2015 Aug;14(8):2126-37. doi: 10.1074/mcp.M115.050161. Epub 2015 May 27.
Ref 2 Novel aminoglycoside 2''-phosphotransferase identified in a gram-negative pathogen. Antimicrob Agents Chemother. 2013 Jan;57(1):452-7. doi: 10.1128/AAC.02049-12. Epub 2012 Nov 5.
Ref 3 Aminoglycoside-resistance mechanisms for cystic fibrosis Pseudomonas aeruginosa isolates are unchanged by long-term, intermittent, inhaled tobramycin treatment. J Infect Dis. 2000 Mar;181(3):1180-4. doi: 10.1086/315312.
Ref 4 A spontaneous point mutation in the aac(6')-Ib' gene results in altered substrate specificity of aminoglycoside 6'-N-acetyltransferase of a Pseudomonas fluorescens strain. FEMS Microbiol Lett. 1994 Jan 15;115(2-3):297-304. doi: 10.1111/j.1574-6968.1994.tb06654.x.
Ref 5 Beta-lactam and aminoglycoside resistance rates and mechanisms among Pseudomonas aeruginosa in French general practice (community and private healthcare centres). J Antimicrob Chemother. 2008 Aug;62(2):316-23. doi: 10.1093/jac/dkn174. Epub 2008 May 8.
Ref 6 Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev. 1993 Mar;57(1):138-63. doi: 10.1128/mr.57.1.138-163.1993.
Ref 7 Aminoglycoside resistance genes aph(2")-Ib and aac(6')-Im detected together in strains of both Escherichia coli and Enterococcus faecium. Antimicrob Agents Chemother. 2001 Oct;45(10):2691-4. doi: 10.1128/AAC.45.10.2691-2694.2001.
Ref 8 Characterization of the chromosomal aminoglycoside 2'-N-acetyltransferase gene from Mycobacterium fortuitum. Antimicrob Agents Chemother. 1996 Oct;40(10):2350-5. doi: 10.1128/AAC.40.10.2350.
Ref 9 Characterization and transcriptional regulation of the 2'-N-acetyltransferase gene from Providencia stuartii. J Bacteriol. 1993 Oct;175(20):6492-8. doi: 10.1128/jb.175.20.6492-6498.1993.
Ref 10 Aminoglycoside 2'-N-acetyltransferase genes are universally present in mycobacteria: characterization of the aac(2')-Ic gene from Mycobacterium tuberculosis and the aac(2')-Id gene from Mycobacterium smegmatis. Mol Microbiol. 1997 Apr;24(2):431-41. doi: 10.1046/j.1365-2958.1997.3471717.x.
Ref 11 Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. Lancet. 2003 Dec 6;362(9399):1888-93. doi: 10.1016/S0140-6736(03)14959-8.
Ref 12 A novel gene cassette, aacA43, in a plasmid-borne class 1 integron. Antimicrob Agents Chemother. 2011 Jun;55(6):2979-82. doi: 10.1128/AAC.01582-10. Epub 2011 Mar 21.
Ref 13 Structural and molecular basis for resistance to aminoglycoside antibiotics by the adenylyltransferase ANT(2")-Ia. mBio. 2015 Jan 6;6(1):e02180-14. doi: 10.1128/mBio.02180-14.
Ref 14 Nucleotide sequence of the AAD(2'') aminoglycoside adenylyltransferase determinant aadB. Evolutionary relationship of this region with those surrounding aadA in R538-1 and dhfrII in R388. Nucleic Acids Res. 1986 Nov 11;14(21):8625-35. doi: 10.1093/nar/14.21.8625.
Ref 15 Identification and characterization of a novel aac(6')-Iag associated with the blaIMP-1-integron in a multidrug-resistant Pseudomonas aeruginosa. PLoS One. 2013 Aug 12;8(8):e70557. doi: 10.1371/journal.pone.0070557. eCollection 2013.
Ref 16 Novel 3-N-aminoglycoside acetyltransferase gene, aac(3)-Ic, from a Pseudomonas aeruginosa integron. Antimicrob Agents Chemother. 2003 May;47(5):1746-8. doi: 10.1128/AAC.47.5.1746-1748.2003.
Ref 17 Molecular characterization of a novel class 1 integron containing bla(GES-1) and a fused product of aac3-Ib/aac6'-Ib' gene cassettes in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2002 Mar;46(3):638-45. doi: 10.1128/AAC.46.3.638-645.2002.
Ref 18 In70 of plasmid pAX22, a bla(VIM-1)-containing integron carrying a new aminoglycoside phosphotransferase gene cassette. Antimicrob Agents Chemother. 2001 Apr;45(4):1249-53. doi: 10.1128/AAC.45.4.1249-1253.2001.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.