Drug (ID: DG00375) and It's Reported Resistant Information
Name
Dibekacin
Synonyms
Dibekacin; Panamicin; Dideoxykanamycin B; 34493-98-6; 3',4'-Dideoxykanamycin B; UNII-45ZFO9E525; BRN 1441606; CHEBI:37945; 45ZFO9E525; Debecacin; DKB; DKM; O-3-Amino-3-deoxy-alpha-D-glucopyranosyl-(1-4)-O-(2,6-diamino-2,3,4,6-tetradeoxy-alpha-D-erythro-hexopyranosyl-(1-6))-2-deoxy-L-streptamine; Dibekacina; Dibekacine; Dibekacinum; Kappati; (1R,2S,3S,4R,6S)-4,6-diamino-3-(3-amino-3-deoxy-alpha-D-glucopyranosyloxy)-2-hydroxycyclohexyl 2,6-diamino-2,3,4,6-tetradeoxy-alpha-D-erythro-hexopyranoside; (1R,2S,3S,4R,6S)-4,6-diamino-3-[(3-amino-3-deoxy-alpha-D-glucopyranosyl)oxy]-2-hydroxycyclohexyl 2,6-diamino-2,3,4,6-tetradeoxy-alpha-D-erythro-hexopyranoside; Dibekacin [INN:BAN]; Dibekacine [INN-French]; Dibekacinum [INN-Latin]; Dibekacina [INN-Spanish]; Dibekacin (INN); D-Streptamine, O-3-amino-3-deoxy-alpha-D-glucopyranosyl-(1-6)-O-(2,6-diamino-2,3,4,6-tetradeoxy-alpha-D-erythro-hexopyranosyl)-(1-4)-2-deoxy-; EINECS 252-064-6; Spectrum_001398; Spectrum2_001528; Spectrum3_000960; Spectrum4_001074; Spectrum5_001613; NCGC00095276-01; DSSTox_CID_2915; DSSTox_RID_76787; DSSTox_GSID_22915; SCHEMBL49816; KBioGR_001428; KBioSS_001878; SPBio_001316; CHEMBL560976; DTXSID2022915; KBio2_001878; KBio2_004446; KBio2_007014; KBio3_002060; HY-B1129; ZINC8214383; Tox21_111496; AC-315; AKOS025402025; CCG-213771; CS-4725; DB13270; NCGC00389765-01; CAS-34493-98-6; D07811; AB01563356_01; Q3706873; (2S,3R,4S,5S,6R)-4-amino-2-[(1S,2S,3R,4S,6R)-4,6-diamino-3-[(2R,3R,6S)-3-amino-6-(aminomethyl)tetrahydropyran-2-yl]oxy-2-hydroxy-cyclohexoxy]-6-(hydroxymethyl)tetrahydropyran-3,5-diol; 84D
    Click to Show/Hide
Structure
Drug Resistance Disease(s)
Disease(s) with Clinically Reported Resistance for This Drug (9 diseases)
Bacterial genitourinary infection [ICD-11: GA0Z-GC8Z]
[1]
Bacterial infection [ICD-11: 1A00-1C4Z]
[2]
Escherichia coli intestinal infection [ICD-11: 1A03]
[3]
Gram-negative bacterial infection [ICD-11: 1B74-1G40]
[1]
Infective endocarditis [ICD-11: BB40]
[1]
Mycobacterial diseases [ICD-11: 1B2Z ]
[4]
Peritonitis [ICD-11: DC50]
[1]
Respiratory trac infection [ICD-11: CA45]
[1]
Sepsis [ICD-11: 1G40]
[1]
Disease(s) with Resistance Information Validated by in-vivo Model for This Drug (1 diseases)
Mycobacterial diseases [ICD-11: 1B2Z ]
[5]
Click to Show/Hide the Molecular Information and External Link(s) of This Drug
Formula
C18H37N5O8
IsoSMILES
C1C[C@H]([C@H](O[C@@H]1CN)O[C@@H]2[C@H](C[C@H]([C@@H]([C@H]2O)O[C@@H]3[C@@H]([C@H]([C@@H]([C@H](O3)CO)O)N)O)N)N)N
InChI
1S/C18H37N5O8/c19-4-6-1-2-7(20)17(28-6)30-15-8(21)3-9(22)16(14(15)27)31-18-13(26)11(23)12(25)10(5-24)29-18/h6-18,24-27H,1-5,19-23H2/t6-,7+,8-,9+,10+,11-,12+,13+,14-,15+,16-,17+,18+/m0/s1
InChIKey
JJCQSGDBDPYCEO-XVZSLQNASA-N
PubChem CID
470999
INTEDE ID
DR2603
DrugBank ID
DB13270
Type(s) of Resistant Mechanism of This Drug
  DISM: Drug Inactivation by Structure Modification
Drug Resistance Data Categorized by Their Corresponding Diseases
ICD-01: Infectious/parasitic diseases
Click to Show/Hide the Resistance Disease of This Class
Bacterial infection [ICD-11: 1A00-1C4Z]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Aminoglycoside N(6')-acetyltransferase type 1 (A6AC1) [2]
Molecule Alteration Expression
Up-regulation
Resistant Disease Bacterial infection [ICD-11: 1A00-1C4Z]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Pseudomonas aeruginosa PAO1 208964
Pseudomonas aeruginosa Nk0001 287
Pseudomonas aeruginosa Nk0002 287
Pseudomonas aeruginosa Nk0003 287
Pseudomonas aeruginosa Nk0004 287
Pseudomonas aeruginosa Nk0005 287
Pseudomonas aeruginosa Nk0006 287
Pseudomonas aeruginosa Nk0007 287
Pseudomonas aeruginosa Nk0008 287
Pseudomonas aeruginosa Nk0009 287
Experiment for
Molecule Alteration
Whole genome sequence assay; Allelic frequency measurement assay
Experiment for
Drug Resistance
Micro-dilution method assay
Mechanism Description Recombinant AAC(6')-Iag protein showed aminoglycoside 6'-N-acetyltransferase activity using thin-layer chromatography (TLC) and MS spectrometric analysis. Escherichia coli carrying aac(6')-Iag showed resistance to amikacin, arbekacin, dibekacin, isepamicin, kanamycin, sisomicin, and tobramycin; but not to gentamicin.AAC(6')-Iag is a functional acetyltransferase that modifies alternate amino groups on the AGs.
Escherichia coli intestinal infection [ICD-11: 1A03]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Aminoglycoside acetyltransferase (AAC) [3]
Molecule Alteration Expression
Inherence
Resistant Disease Escherichia coli infection [ICD-11: 1A03.0]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli DH5alpha 668369
Escherichia coli SCH92111602 562
Experiment for
Molecule Alteration
Dot blot hybridizations assay
Experiment for
Drug Resistance
Standard broth microdilution method assay
Mechanism Description Escherichia coli SCH92111602 expresses an aminoglycoside resistance profile similar to that conferred by the aac(6')-Ie-aph(2")-Ia gene found in gram-positive cocci and was found to contain the aminoglycoside resistance genes aph(2")-Ib and aac(6')-Im (only 44 nucleotides apart). SCH92111602 is an Escherichia coli clinical isolate resistant to a number of aminoglycoside antibiotics, including gentamicin, tobramycin, and amikacin, and contains an approximately 50-kb plasmid.
Key Molecule: Aminoglycoside acetyltransferase (AAC) [3]
Molecule Alteration Expression
Acquired
Resistant Disease Escherichia coli infection [ICD-11: 1A03.0]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli DH5alpha 668369
Escherichia coli SCH92111602 562
Experiment for
Molecule Alteration
Dot blot hybridizations assay
Experiment for
Drug Resistance
Standard broth microdilution method assay
Mechanism Description Plasmid DNA isolated from this strain was introduced into Escherichia coli DH5alpha by transformation, and colonies were selected on Luria-Bertani agar plates containing 10 ug of tobramycin per ml. Analysis of restriction digests on agarose gels of DNA from a tobramycin-resistant transformant confirmed the presence of the same 50-kb plasmid that was isolated from Escherichia coli SCH92111602.
Mycobacterial diseases [ICD-11: 1B2Z ]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Aminoglycoside 2'-N-acetyltransferase (A2NA) [5]
Molecule Alteration Expression
Acquired
Resistant Disease Mycobacterium smegmatis infection [ICD-11: 1B2Z.3]
Experimental Note Discovered Using In-vivo Testing Model
In Vitro Model Escherichia coli strain DH5a 668369
Mycolicibacterium smegmatis strain EP10 1772
Mycolicibacterium smegmatis strain mc2155 246196
Experiment for
Molecule Alteration
Southern blot hybridizations assay
Experiment for
Drug Resistance
Agar macrodilution assay
Mechanism Description The introduction of a plasmid-located copy of either the aac (2')-Ib or the aac (2')-Id genes into M. smegmatis mc2155 produces an increase in the level of resistance over those values observed in M. smegmatis mc2155. However, the introduction of the plasmid-located aac (2') Ic gene did not lead to an increase in the MICs. In this experiment, an increase of at least two dilutions in the MIC values over those observed in M. smegmatismc2155 with the vector pSUM36 has been assumed to be due to the increase in the activity of the AAC (2') enzyme. The MICs for the 2'-ethylnetilmicin do not change since this aminoglycoside is not a substrate of the AAC (2') enzyme.
Key Molecule: Aminoglycoside 2'-N-acetyltransferase (A2NA) [4]
Molecule Alteration Expression
Acquired
Resistant Disease Mycobacterium smegmatis infection [ICD-11: 1B2Z.3]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli XL1-Blue 562
Streptomyces lividans strain 1326 1200984
Mycolicibacterium fortuitum strain FC1k 1766
Mycolicibacterium smegmatis strain mc2 155 246196
Experiment for
Molecule Alteration
Southern blot hybridizations assay
Experiment for
Drug Resistance
Twofold dilution of antibiotics assay
Mechanism Description The aac(2')-Ib gene cloned in a mycobacterial plasmid and introduced in Mycobacterium smegmatis conferred resistance to gentamicin, tobramycin, dibekacin, netilmicin, and 6'-N-ethylnetilmicin.
Gram-negative bacterial infection [ICD-11: 1B74-1G40]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [1]
Molecule Alteration Expression
Up-regulation
Resistant Disease Gram-negative pathogens infection [ICD-11: 1B74-1G40]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
Sepsis [ICD-11: 1G40]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [1]
Molecule Alteration Expression
Up-regulation
Resistant Disease Sepsis [ICD-11: 1G40.0]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
ICD-11: Circulatory system diseases
Click to Show/Hide the Resistance Disease of This Class
Infective endocarditis [ICD-11: BB40]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [1]
Molecule Alteration Expression
Up-regulation
Resistant Disease Infective endocarditis [ICD-11: BB40.0]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
ICD-12: Respiratory system diseases
Click to Show/Hide the Resistance Disease of This Class
Respiratory trac infection [ICD-11: CA45]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [1]
Molecule Alteration Expression
Up-regulation
Resistant Disease Respiratory trac infection [ICD-11: CA45.0]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
ICD-13: Digestive system diseases
Click to Show/Hide the Resistance Disease of This Class
Peritonitis [ICD-11: DC50]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [1]
Molecule Alteration Expression
Up-regulation
Resistant Disease Gram-negative pathogens infection [ICD-11: 1B74-1G40]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
ICD-16: Genitourinary system diseases
Click to Show/Hide the Resistance Disease of This Class
Bacterial genitourinary infection [ICD-11: GA0Z-GC8Z]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [1]
Molecule Alteration Expression
Up-regulation
Resistant Disease Gram-negative pathogens infection [ICD-11: 1B74-1G40]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
References
Ref 1 Novel aminoglycoside 2''-phosphotransferase identified in a gram-negative pathogen. Antimicrob Agents Chemother. 2013 Jan;57(1):452-7. doi: 10.1128/AAC.02049-12. Epub 2012 Nov 5.
Ref 2 Identification and characterization of a novel aac(6')-Iag associated with the blaIMP-1-integron in a multidrug-resistant Pseudomonas aeruginosa. PLoS One. 2013 Aug 12;8(8):e70557. doi: 10.1371/journal.pone.0070557. eCollection 2013.
Ref 3 Aminoglycoside resistance genes aph(2")-Ib and aac(6')-Im detected together in strains of both Escherichia coli and Enterococcus faecium. Antimicrob Agents Chemother. 2001 Oct;45(10):2691-4. doi: 10.1128/AAC.45.10.2691-2694.2001.
Ref 4 Characterization of the chromosomal aminoglycoside 2'-N-acetyltransferase gene from Mycobacterium fortuitum. Antimicrob Agents Chemother. 1996 Oct;40(10):2350-5. doi: 10.1128/AAC.40.10.2350.
Ref 5 Aminoglycoside 2'-N-acetyltransferase genes are universally present in mycobacteria: characterization of the aac(2')-Ic gene from Mycobacterium tuberculosis and the aac(2')-Id gene from Mycobacterium smegmatis. Mol Microbiol. 1997 Apr;24(2):431-41. doi: 10.1046/j.1365-2958.1997.3471717.x.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.