Drug Information
Drug (ID: DG00138) and It's Reported Resistant Information
Name |
Camptothecin
|
||||
---|---|---|---|---|---|
Synonyms |
Camptothecin; Camptothecine; 7689-03-4; (S)-(+)-Camptothecin; Campathecin; d-Camptothecin; (+)-Camptothecine; (+)-Camptothecin; 20(S)-Camptothecine; 21,22-Secocamptothecin-21-oic acid lactone; NSC94600; (S)-Camptothecin; Camptothecine (8CI); 20(S)-Camptothecin; Camptothecine (S,+); CHEMBL65; UNII-XT3Z54Z28A; MLS000766223; (4S)-4-ethyl-4-hydroxy-1H-pyrano[3',4':6,7]indolizino[1,2-b]quinoline-3,14(4H,12H)-dione; XT3Z54Z28A; CHEBI:27656; VSJKWCGYPAHWDS-FQEVSTJZSA-N; Camptothecin, Camptotheca acuminata; NSC-94600; Camptothecin derivat
Click to Show/Hide
|
||||
Indication |
In total 1 Indication(s)
|
||||
Structure | |||||
Drug Resistance Disease(s) |
Disease(s) with Resistance Information Discovered by Cell Line Test for This Drug
(1 diseases)
Liver cancer [ICD-11: 2C12]
[2]
|
||||
Target | DNA topoisomerase I (TOP1) | TOP1_HUMAN | [1] | ||
Click to Show/Hide the Molecular Information and External Link(s) of This Drug | |||||
Formula |
C20H16N2O4
|
||||
IsoSMILES |
CC[C@@]1(C2=C(COC1=O)C(=O)N3CC4=CC5=CC=CC=C5N=C4C3=C2)O
|
||||
InChI |
1S/C20H16N2O4/c1-2-20(25)14-8-16-17-12(7-11-5-3-4-6-15(11)21-17)9-22(16)18(23)13(14)10-26-19(20)24/h3-8,25H,2,9-10H2,1H3/t20-/m0/s1
|
||||
InChIKey |
VSJKWCGYPAHWDS-FQEVSTJZSA-N
|
||||
PubChem CID | |||||
ChEBI ID | |||||
TTD Drug ID | |||||
VARIDT ID | |||||
DrugBank ID |
Type(s) of Resistant Mechanism of This Drug
EADR: Epigenetic Alteration of DNA, RNA or Protein
IDUE: Irregularity in Drug Uptake and Drug Efflux
RTDM: Regulation by the Disease Microenvironment
UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Their Corresponding Diseases
ICD-02: Benign/in-situ/malignant neoplasm
Acute lymphocytic leukemia [ICD-11: 2B33]
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Key Molecule: hsa-mir-181a | [3] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Paediatric acute lymphocytic leukemia [ICD-11: 2B33.4] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell proliferation | Inhibition | hsa05200 | |
In Vitro Model | CCRF-CEM cells | Pleural effusion | Homo sapiens (Human) | CVCL_0207 |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | Abnormal high expression of miR-181a in bone marrow and Cim-C1 cells in ALL children, inhibition of Mir-181A expression in Cim-C1 cells can significantly increase drug sensitivity of CIM-C1 cells, and upregulation of Mir-181A expression in CCRF-CEM cells can significantly increase drug resistance of CCRF-CEM cells. |
Osteosarcoma [ICD-11: 2B51]
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Key Molecule: hsa-mir-124 | [1] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Osteosarcoma [ICD-11: 2B51.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell invasion | Inhibition | hsa05200 | ||
Cell migration | Inhibition | hsa04670 | ||
Cell proliferation | Inhibition | hsa05200 | ||
PI3K/AKT signaling pathway | Inhibition | hsa04151 | ||
In Vitro Model | MDA-MB-231 cells | Breast | Homo sapiens (Human) | CVCL_0062 |
T47D cells | Breast | Homo sapiens (Human) | CVCL_0553 | |
ZR75-1 cells | Breast | Homo sapiens (Human) | CVCL_0588 | |
HCC1937 cells | Breast | Homo sapiens (Human) | CVCL_0290 | |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | miR-124 may be involved in DNA repair by directly targeting ATMIN and PARP1, suggesting that multiple DNA repair pathways are affected by miR-124 and therefore manipulation of miR-124 level/activity may improve the efficacy of chemotherapies that induce DNA damage. repression of ATMIN (+) the HR repair defect induced by miR-124, and restoration of ATMIN reversed the effect of miR-124 overexpression in breast cancer cells. Therefore, it is intriguing to further speculate which of the multiple roles of ATMIN is specifically affected in breast carcinogenesis. On the other hand, PARP1-mediated processes play a role in oncogenesis, cancer progression, and therapeutic resistance. | |||
Key Molecule: hsa-mir-103 | [4] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Osteosarcoma [ICD-11: 2B51.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | U2OS cells | Bone | Homo sapiens (Human) | CVCL_0042 |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Key Molecule: hsa-miR-107 | [4] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Osteosarcoma [ICD-11: 2B51.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | U2OS cells | Bone | Homo sapiens (Human) | CVCL_0042 |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Key Molecule: ATM interactor (ATMIN) | [1] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Osteosarcoma [ICD-11: 2B51.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell invasion | Inhibition | hsa05200 | ||
Cell migration | Inhibition | hsa04670 | ||
Cell proliferation | Inhibition | hsa05200 | ||
PI3K/AKT signaling pathway | Inhibition | hsa04151 | ||
In Vitro Model | MDA-MB-231 cells | Breast | Homo sapiens (Human) | CVCL_0062 |
T47D cells | Breast | Homo sapiens (Human) | CVCL_0553 | |
ZR75-1 cells | Breast | Homo sapiens (Human) | CVCL_0588 | |
HCC1937 cells | Breast | Homo sapiens (Human) | CVCL_0290 | |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | miR-124 may be involved in DNA repair by directly targeting ATMIN and PARP1, suggesting that multiple DNA repair pathways are affected by miR-124 and therefore manipulation of miR-124 level/activity may improve the efficacy of chemotherapies that induce DNA damage. repression of ATMIN (+) the HR repair defect induced by miR-124, and restoration of ATMIN reversed the effect of miR-124 overexpression in breast cancer cells. Therefore, it is intriguing to further speculate which of the multiple roles of ATMIN is specifically affected in breast carcinogenesis. On the other hand, PARP1-mediated processes play a role in oncogenesis, cancer progression, and therapeutic resistance. | |||
Key Molecule: Poly[ADP-ribose] synthase 1 (PARP1) | [1] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Osteosarcoma [ICD-11: 2B51.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell invasion | Inhibition | hsa05200 | ||
Cell migration | Inhibition | hsa04670 | ||
Cell proliferation | Inhibition | hsa05200 | ||
PI3K/AKT signaling pathway | Inhibition | hsa04151 | ||
In Vitro Model | MDA-MB-231 cells | Breast | Homo sapiens (Human) | CVCL_0062 |
T47D cells | Breast | Homo sapiens (Human) | CVCL_0553 | |
ZR75-1 cells | Breast | Homo sapiens (Human) | CVCL_0588 | |
HCC1937 cells | Breast | Homo sapiens (Human) | CVCL_0290 | |
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | miR-124 may be involved in DNA repair by directly targeting ATMIN and PARP1, suggesting that multiple DNA repair pathways are affected by miR-124 and therefore manipulation of miR-124 level/activity may improve the efficacy of chemotherapies that induce DNA damage. repression of ATMIN (+) the HR repair defect induced by miR-124, and restoration of ATMIN reversed the effect of miR-124 overexpression in breast cancer cells. Therefore, it is intriguing to further speculate which of the multiple roles of ATMIN is specifically affected in breast carcinogenesis. On the other hand, PARP1-mediated processes play a role in oncogenesis, cancer progression, and therapeutic resistance. | |||
Key Molecule: DNA repair protein RAD51 homolog 1 (RAD51) | [4] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Osteosarcoma [ICD-11: 2B51.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | U2OS cells | Bone | Homo sapiens (Human) | CVCL_0042 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Key Molecule: DNA repair protein RAD51 homolog 4 (RAD51D) | [4] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Osteosarcoma [ICD-11: 2B51.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | U2OS cells | Bone | Homo sapiens (Human) | CVCL_0042 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. |
Liver cancer [ICD-11: 2C12]
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Irregularity in Drug Uptake and Drug Efflux (IDUE) | ||||
Key Molecule: ATP-binding cassette sub-family G2 (ABCG2) | [2] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Hepatocellular cancer [ICD-11: 2C12.4] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Inhibition | hsa04210 | |
In Vitro Model | Huh-7 cells | Liver | Homo sapiens (Human) | CVCL_0336 |
HepG2 cells | Liver | Homo sapiens (Human) | CVCL_0027 | |
Hep3B cells | Liver | Homo sapiens (Human) | CVCL_0326 | |
PLC/PRF-5 cells | Liver | Homo sapiens (Human) | CVCL_0485 | |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
MTS assay; Flow cytometry assay | |||
Mechanism Description | LincRNA-VLDLR (linc-VLDLR) was significantly up-regulated in malignant hepatocytes. Exposure of HCC cells to diverse anti-cancer agents such as sorafenib, camptothecin, and doxorubicin increased linc-VLDLR expression in cells as well as within EVs released from these cells. Incubation with EVs reduced chemotherapy-induced cell death and also increased linc-VLDLR expression in recipient cells. RNAi-mediated knockdown of linc-VLDLR decreased cell viability and abrogated cell cycle progression. Moreover, knockdown of VLDLR reduced expression of ABCG2 (ATP-binding cassette, sub-family G member 2), whereas over-expression of this protein reduced the effects of VLDLR knockdown on sorafenib-induced cell death. Here, linc-VLDLR is identified as an extracellular vesicle enriched LncRNA that contributes to cellular stress responses. | |||
Regulation by the Disease Microenvironment (RTDM) | ||||
Key Molecule: Very low density lipoprotein receptor (VLDLR) | [2] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Hepatocellular cancer [ICD-11: 2C12.4] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Inhibition | hsa04210 | |
In Vitro Model | Huh-7 cells | Liver | Homo sapiens (Human) | CVCL_0336 |
HepG2 cells | Liver | Homo sapiens (Human) | CVCL_0027 | |
Hep3B cells | Liver | Homo sapiens (Human) | CVCL_0326 | |
PLC/PRF-5 cells | Liver | Homo sapiens (Human) | CVCL_0485 | |
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
MTS assay; Flow cytometry assay | |||
Mechanism Description | LincRNA-VLDLR (linc-VLDLR) was significantly up-regulated in malignant hepatocytes. Exposure of HCC cells to diverse anti-cancer agents such as sorafenib, camptothecin, and doxorubicin increased linc-VLDLR expression in cells as well as within EVs released from these cells. Incubation with EVs reduced chemotherapy-induced cell death and also increased linc-VLDLR expression in recipient cells. RNAi-mediated knockdown of linc-VLDLR decreased cell viability and abrogated cell cycle progression. Moreover, knockdown of VLDLR reduced expression of ABCG2 (ATP-binding cassette, sub-family G member 2), whereas over-expression of this protein reduced the effects of VLDLR knockdown on sorafenib-induced cell death. Here, linc-VLDLR is identified as an extracellular vesicle enriched LncRNA that contributes to cellular stress responses. |
Lung cancer [ICD-11: 2C25]
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Key Molecule: hsa-mir-103 | [4] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Lung cancer [ICD-11: 2C25.5] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | H1299 cells | Lung | Homo sapiens (Human) | CVCL_0060 |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Key Molecule: hsa-miR-107 | [4] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Lung cancer [ICD-11: 2C25.5] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | H1299 cells | Lung | Homo sapiens (Human) | CVCL_0060 |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Key Molecule: DNA repair protein RAD51 homolog 1 (RAD51) | [4] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Lung cancer [ICD-11: 2C25.5] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | H1299 cells | Lung | Homo sapiens (Human) | CVCL_0060 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Key Molecule: DNA repair protein RAD51 homolog 4 (RAD51D) | [4] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Lung cancer [ICD-11: 2C25.5] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | H1299 cells | Lung | Homo sapiens (Human) | CVCL_0060 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. |
Breast cancer [ICD-11: 2C60]
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Key Molecule: hsa-mir-124 | [1] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Breast cancer [ICD-11: 2C60.3] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell invasion | Inhibition | hsa05200 | ||
Cell migration | Inhibition | hsa04670 | ||
Cell proliferation | Inhibition | hsa05200 | ||
PI3K/AKT signaling pathway | Inhibition | hsa04151 | ||
In Vitro Model | MDA-MB-231 cells | Breast | Homo sapiens (Human) | CVCL_0062 |
T47D cells | Breast | Homo sapiens (Human) | CVCL_0553 | |
ZR75-1 cells | Breast | Homo sapiens (Human) | CVCL_0588 | |
HCC1937 cells | Breast | Homo sapiens (Human) | CVCL_0290 | |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | miR-124 may be involved in DNA repair by directly targeting ATMIN and PARP1, suggesting that multiple DNA repair pathways are affected by miR-124 and therefore manipulation of miR-124 level/activity may improve the efficacy of chemotherapies that induce DNA damage. repression of ATMIN (+) the HR repair defect induced by miR-124, and restoration of ATMIN reversed the effect of miR-124 overexpression in breast cancer cells. Therefore, it is intriguing to further speculate which of the multiple roles of ATMIN is specifically affected in breast carcinogenesis. On the other hand, PARP1-mediated processes play a role in oncogenesis, cancer progression, and therapeutic resistance. | |||
Key Molecule: hsa-mir-103 | [4] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Breast cancer [ICD-11: 2C60.3] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | MDA-MB-231 cells | Breast | Homo sapiens (Human) | CVCL_0062 |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Key Molecule: hsa-miR-107 | [4] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Breast cancer [ICD-11: 2C60.3] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | MDA-MB-231 cells | Breast | Homo sapiens (Human) | CVCL_0062 |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Key Molecule: ATM interactor (ATMIN) | [1] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Breast cancer [ICD-11: 2C60.3] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell invasion | Inhibition | hsa05200 | ||
Cell migration | Inhibition | hsa04670 | ||
Cell proliferation | Inhibition | hsa05200 | ||
PI3K/AKT signaling pathway | Inhibition | hsa04151 | ||
In Vitro Model | MDA-MB-231 cells | Breast | Homo sapiens (Human) | CVCL_0062 |
T47D cells | Breast | Homo sapiens (Human) | CVCL_0553 | |
ZR75-1 cells | Breast | Homo sapiens (Human) | CVCL_0588 | |
HCC1937 cells | Breast | Homo sapiens (Human) | CVCL_0290 | |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | miR-124 may be involved in DNA repair by directly targeting ATMIN and PARP1, suggesting that multiple DNA repair pathways are affected by miR-124 and therefore manipulation of miR-124 level/activity may improve the efficacy of chemotherapies that induce DNA damage. repression of ATMIN (+) the HR repair defect induced by miR-124, and restoration of ATMIN reversed the effect of miR-124 overexpression in breast cancer cells. Therefore, it is intriguing to further speculate which of the multiple roles of ATMIN is specifically affected in breast carcinogenesis. On the other hand, PARP1-mediated processes play a role in oncogenesis, cancer progression, and therapeutic resistance. | |||
Key Molecule: Poly[ADP-ribose] synthase 1 (PARP1) | [1] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Breast cancer [ICD-11: 2C60.3] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell invasion | Inhibition | hsa05200 | ||
Cell migration | Inhibition | hsa04670 | ||
Cell proliferation | Inhibition | hsa05200 | ||
PI3K/AKT signaling pathway | Inhibition | hsa04151 | ||
In Vitro Model | MDA-MB-231 cells | Breast | Homo sapiens (Human) | CVCL_0062 |
T47D cells | Breast | Homo sapiens (Human) | CVCL_0553 | |
ZR75-1 cells | Breast | Homo sapiens (Human) | CVCL_0588 | |
HCC1937 cells | Breast | Homo sapiens (Human) | CVCL_0290 | |
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | miR-124 may be involved in DNA repair by directly targeting ATMIN and PARP1, suggesting that multiple DNA repair pathways are affected by miR-124 and therefore manipulation of miR-124 level/activity may improve the efficacy of chemotherapies that induce DNA damage. repression of ATMIN (+) the HR repair defect induced by miR-124, and restoration of ATMIN reversed the effect of miR-124 overexpression in breast cancer cells. Therefore, it is intriguing to further speculate which of the multiple roles of ATMIN is specifically affected in breast carcinogenesis. On the other hand, PARP1-mediated processes play a role in oncogenesis, cancer progression, and therapeutic resistance. | |||
Key Molecule: DNA repair protein RAD51 homolog 1 (RAD51) | [4] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Breast cancer [ICD-11: 2C60.3] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | MDA-MB-231 cells | Breast | Homo sapiens (Human) | CVCL_0062 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Key Molecule: DNA repair protein RAD51 homolog 4 (RAD51D) | [4] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Breast cancer [ICD-11: 2C60.3] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | MDA-MB-231 cells | Breast | Homo sapiens (Human) | CVCL_0062 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. |
Ovarian cancer [ICD-11: 2C73]
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Key Molecule: hsa-mir-103 | [4] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | PEO1 C4-2 cells | Ovary | Homo sapiens (Human) | N.A. |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Key Molecule: hsa-miR-107 | [4] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | PEO1 C4-2 cells | Ovary | Homo sapiens (Human) | N.A. |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Key Molecule: DNA repair protein RAD51 homolog 1 (RAD51) | [4] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | PEO1 C4-2 cells | Ovary | Homo sapiens (Human) | N.A. |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Key Molecule: DNA repair protein RAD51 homolog 4 (RAD51D) | [4] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | PEO1 C4-2 cells | Ovary | Homo sapiens (Human) | N.A. |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. |
Cervical cancer [ICD-11: 2C77]
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Key Molecule: hsa-mir-103 | [4] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Cervical cancer [ICD-11: 2C77.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | Hela cells | Cervix uteri | Homo sapiens (Human) | CVCL_0030 |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Key Molecule: hsa-miR-107 | [4] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Cervical cancer [ICD-11: 2C77.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | Hela cells | Cervix uteri | Homo sapiens (Human) | CVCL_0030 |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Key Molecule: DNA repair protein RAD51 homolog 1 (RAD51) | [4] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Cervical cancer [ICD-11: 2C77.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | Hela cells | Cervix uteri | Homo sapiens (Human) | CVCL_0030 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Key Molecule: DNA repair protein RAD51 homolog 4 (RAD51D) | [4] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Cervical cancer [ICD-11: 2C77.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | Hela cells | Cervix uteri | Homo sapiens (Human) | CVCL_0030 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. |
Prostate cancer [ICD-11: 2C82]
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Key Molecule: hsa-mir-34 | [5] | |||
Molecule Alteration | Expression | Up-regulation |
||
Sensitive Disease | Prostate cancer [ICD-11: 2C82.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell growth | Inhibition | hsa05200 | |
In Vitro Model | DU-145 cells | Prostate | Homo sapiens (Human) | CVCL_0105 |
LNCaP cells | Prostate | Homo sapiens (Human) | CVCL_0395 | |
PC3 cells | Prostate | Homo sapiens (Human) | CVCL_0035 | |
PrEC cells | Prostate | Homo sapiens (Human) | CVCL_0061 | |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
Trypan blue dye exclusion assay | |||
Mechanism Description | Inhibition of the SIRT1 activity or expression resulted in attenuation of cell proliferation and chemoresistance in PC3 and DU145 cells. Ectopic expression of miR-34a decreased the SIRT1 mRNA and protein levels as well as protein levels of known direct target genes. Ectopic miR-34a expression resulted in cell cycle arrest and growth inhibition and attenuated chemoresistance to anticancer drug camptothecin by inducing apoptosis. | |||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Key Molecule: NAD-dependent protein deacetylase sirtuin-1 (SIRT1) | [5] | |||
Molecule Alteration | Expression | Down-regulation |
||
Sensitive Disease | Prostate cancer [ICD-11: 2C82.0] | |||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell growth | Inhibition | hsa05200 | ||
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | DU-145 cells | Prostate | Homo sapiens (Human) | CVCL_0105 |
LNCaP cells | Prostate | Homo sapiens (Human) | CVCL_0395 | |
PC3 cells | Prostate | Homo sapiens (Human) | CVCL_0035 | |
PrEC cells | Prostate | Homo sapiens (Human) | CVCL_0061 | |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Trypan blue dye exclusion assay | |||
Mechanism Description | Inhibition of the SIRT1 activity or expression resulted in attenuation of cell proliferation and chemoresistance in PC3 and DU145 cells. Ectopic expression of miR-34a decreased the SIRT1 mRNA and protein levels as well as protein levels of known direct target genes. Ectopic miR-34a expression resulted in cell cycle arrest and growth inhibition and attenuated chemoresistance to anticancer drug camptothecin by inducing apoptosis. |
References
If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.