Molecule Information
General Information of the Molecule (ID: Mol00585)
Name |
DNA repair protein RAD51 homolog 1 (RAD51)
,Homo sapiens
|
||||
---|---|---|---|---|---|
Synonyms |
HsRAD51; hRAD51; RAD51 homolog A; RAD51A; RECA
Click to Show/Hide
|
||||
Molecule Type |
Protein
|
||||
Gene Name |
RAD51
|
||||
Gene ID | |||||
Location |
chr15:40694774-40732340[+]
|
||||
Sequence |
MAMQMQLEANADTSVEEESFGPQPISRLEQCGINANDVKKLEEAGFHTVEAVAYAPKKEL
INIKGISEAKADKILAEAAKLVPMGFTTATEFHQRRSEIIQITTGSKELDKLLQGGIETG SITEMFGEFRTGKTQICHTLAVTCQLPIDRGGGEGKAMYIDTEGTFRPERLLAVAERYGL SGSDVLDNVAYARAFNTDHQTQLLYQASAMMVESRYALLIVDSATALYRTDYSGRGELSA RQMHLARFLRMLLRLADEFGVAVVITNQVVAQVDGAAMFAADPKKPIGGNIIAHASTTRL YLRKGRGETRICKIYDSPCLPEAEAMFAINADGVGDAKD Click to Show/Hide
|
||||
Function |
Plays an important role in homologous strand exchange, a key step in DNA repair through homologous recombination (HR). Binds to single and double-stranded DNA and exhibits DNA-dependent ATPase activity. Catalyzes the recognition of homology and strand exchange between homologous DNA partners to form a joint molecule between a processed DNA break and the repair template. Binds to single-stranded DNA in an ATP-dependent manner to form nucleoprotein filaments which are essential for the homology search and strand exchange. Part of a PALB2-scaffolded HR complex containing BRCA2 and RAD51C and which is thought to play a role in DNA repair by HR. Plays a role in regulating mitochondrial DNA copy number under conditions of oxidative stress in the presence of RAD51C and XRCC3. Also involved in interstrand cross-link repair.
Click to Show/Hide
|
||||
Uniprot ID | |||||
Ensembl ID | |||||
HGNC ID | |||||
Click to Show/Hide the Complete Species Lineage | |||||
Type(s) of Resistant Mechanism of This Molecule
UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Drug
Approved Drug(s)
3 drug(s) in total
Cisplatin
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Disease Class: Ovarian serous carcinoma | [1] | |||
Sensitive Disease | Ovarian serous carcinoma [ICD-11: 2C73.2] | |||
Sensitive Drug | Cisplatin | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Identified from the Human Clinical Data | |||
Cell Pathway Regulation | CDK4/6-FOXM1 signaling pathway | Regulation | hsa04218 | |
Cell apoptosis | Activation | hsa04210 | ||
Cell proliferation | Inhibition | hsa05200 | ||
Homologous recombination-mediated repair pathway | Inhibition | hsa03440 | ||
In Vitro Model | SkOV3 cells | Ovary | Homo sapiens (Human) | CVCL_0532 |
Hela cells | Cervix uteri | Homo sapiens (Human) | CVCL_0030 | |
Hey A8 cells | Ovary | Homo sapiens (Human) | CVCL_8878 | |
OVCA433 cells | Ovary | Homo sapiens (Human) | CVCL_0475 | |
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | miR-506 overexpression sensitized ovarian cancer cells to cisplatin or to a commercially available PARP inhibitor (olaparib) due to miR-506 overexpression decreasing RAD51 levels and homologous recombination efficiency. | |||
Disease Class: Osteosarcoma | [2], [3] | |||
Sensitive Disease | Osteosarcoma [ICD-11: 2B51.0] | |||
Sensitive Drug | Cisplatin | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | U2OS cells | Bone | Homo sapiens (Human) | CVCL_0042 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. And overexpression of miR-96 in human cancer cells reduces the levels of RAD51 and REV1 and impacts the cellular response to agents that cause DNA damage. | |||
Disease Class: Breast adenocarcinoma | [2], [3] | |||
Sensitive Disease | Breast adenocarcinoma [ICD-11: 2C60.1] | |||
Sensitive Drug | Cisplatin | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | MDA-MB-231 cells | Breast | Homo sapiens (Human) | CVCL_0062 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. And overexpression of miR-96 in human cancer cells reduces the levels of RAD51 and REV1 and impacts the cellular response to agents that cause DNA damage. | |||
Disease Class: HPV-related endocervical adenocarcinoma | [2], [3] | |||
Sensitive Disease | HPV-related endocervical adenocarcinoma [ICD-11: 2E67.1] | |||
Sensitive Drug | Cisplatin | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | Hela cells | Cervix uteri | Homo sapiens (Human) | CVCL_0030 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. And overexpression of miR-96 in human cancer cells reduces the levels of RAD51 and REV1 and impacts the cellular response to agents that cause DNA damage. | |||
Disease Class: Lung large cell carcinoma | [2], [3] | |||
Sensitive Disease | Lung large cell carcinoma [ICD-11: 2C25.4] | |||
Sensitive Drug | Cisplatin | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | H1299 cells | Lung | Homo sapiens (Human) | CVCL_0060 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. And overexpression of miR-96 in human cancer cells reduces the levels of RAD51 and REV1 and impacts the cellular response to agents that cause DNA damage. |
Etoposide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Disease Class: Osteosarcoma | [3] | |||
Sensitive Disease | Osteosarcoma [ICD-11: 2B51.0] | |||
Sensitive Drug | Etoposide | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | U2OS cells | Bone | Homo sapiens (Human) | CVCL_0042 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Disease Class: Breast cancer | [3] | |||
Sensitive Disease | Breast cancer [ICD-11: 2C60.3] | |||
Sensitive Drug | Etoposide | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | MDA-MB-231 cells | Breast | Homo sapiens (Human) | CVCL_0062 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Disease Class: Cervical cancer | [3] | |||
Sensitive Disease | Cervical cancer [ICD-11: 2C77.0] | |||
Sensitive Drug | Etoposide | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | Hela cells | Cervix uteri | Homo sapiens (Human) | CVCL_0030 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Disease Class: Lung cancer | [3] | |||
Sensitive Disease | Lung cancer [ICD-11: 2C25.5] | |||
Sensitive Drug | Etoposide | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | H1299 cells | Lung | Homo sapiens (Human) | CVCL_0060 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Disease Class: Ovarian cancer | [3] | |||
Sensitive Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Sensitive Drug | Etoposide | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | PEO1 C4-2 cells | Ovary | Homo sapiens (Human) | N.A. |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. |
Olaparib
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Disease Class: Ovarian serous carcinoma | [1] | |||
Sensitive Disease | Ovarian serous carcinoma [ICD-11: 2C73.2] | |||
Sensitive Drug | Olaparib | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Identified from the Human Clinical Data | |||
Cell Pathway Regulation | CDK4/6-FOXM1 signaling pathway | Regulation | hsa04218 | |
Cell apoptosis | Activation | hsa04210 | ||
Cell proliferation | Inhibition | hsa05200 | ||
Homologous recombination-mediated repair pathway | Inhibition | hsa03440 | ||
In Vitro Model | SkOV3 cells | Ovary | Homo sapiens (Human) | CVCL_0532 |
Hela cells | Cervix uteri | Homo sapiens (Human) | CVCL_0030 | |
Hey A8 cells | Ovary | Homo sapiens (Human) | CVCL_8878 | |
OVCA433 cells | Ovary | Homo sapiens (Human) | CVCL_0475 | |
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | miR-506 overexpression sensitized ovarian cancer cells to cisplatin or to a commercially available PARP inhibitor (olaparib) due to miR-506 overexpression decreasing RAD51 levels and homologous recombination efficiency. |
Clinical Trial Drug(s)
1 drug(s) in total
Camptothecin
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Disease Class: Osteosarcoma | [3] | |||
Sensitive Disease | Osteosarcoma [ICD-11: 2B51.0] | |||
Sensitive Drug | Camptothecin | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | U2OS cells | Bone | Homo sapiens (Human) | CVCL_0042 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Disease Class: Breast cancer | [3] | |||
Sensitive Disease | Breast cancer [ICD-11: 2C60.3] | |||
Sensitive Drug | Camptothecin | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | MDA-MB-231 cells | Breast | Homo sapiens (Human) | CVCL_0062 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Disease Class: Cervical cancer | [3] | |||
Sensitive Disease | Cervical cancer [ICD-11: 2C77.0] | |||
Sensitive Drug | Camptothecin | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | Hela cells | Cervix uteri | Homo sapiens (Human) | CVCL_0030 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Disease Class: Lung cancer | [3] | |||
Sensitive Disease | Lung cancer [ICD-11: 2C25.5] | |||
Sensitive Drug | Camptothecin | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | H1299 cells | Lung | Homo sapiens (Human) | CVCL_0060 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. | |||
Disease Class: Ovarian cancer | [3] | |||
Sensitive Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Sensitive Drug | Camptothecin | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | PEO1 C4-2 cells | Ovary | Homo sapiens (Human) | N.A. |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
Survival assay/crystal violet staining assay | |||
Mechanism Description | miR-103 and miR-107 reduced homology-directed repair and sensitized cells to various DNA damaging agents, including cisplatin and a PARP inhibitor. Mechanistic analyses revealed that both miR-103 and miR-107 directly target and regulate RAD51 and RAD51D, which is critical for miR-103/107-mediated chemosensitization. |
Disease- and Tissue-specific Abundances of This Molecule
ICD Disease Classification 02
Lung cancer [ICD-11: 2C25]
Differential expression of molecule in resistant diseases | ||
The Studied Tissue | Lung | |
The Specified Disease | Lung cancer | |
The Expression Level of Disease Section Compare with the Healthy Individual Tissue | p-value: 4.40E-140; Fold-change: 7.37E-01; Z-score: 3.40E+00 | |
The Expression Level of Disease Section Compare with the Adjacent Tissue | p-value: 1.70E-103; Fold-change: 7.86E-01; Z-score: 3.69E+00 | |
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
|
||
Disease-specific Molecule Abundances | Click to View the Clearer Original Diagram | |
Breast cancer [ICD-11: 2C60]
Differential expression of molecule in resistant diseases | ||
The Studied Tissue | Breast tissue | |
The Specified Disease | Breast cancer | |
The Expression Level of Disease Section Compare with the Healthy Individual Tissue | p-value: 7.23E-160; Fold-change: 6.01E-01; Z-score: 2.85E+00 | |
The Expression Level of Disease Section Compare with the Adjacent Tissue | p-value: 1.54E-15; Fold-change: 4.85E-01; Z-score: 1.55E+00 | |
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
|
||
Disease-specific Molecule Abundances | Click to View the Clearer Original Diagram | |
Ovarian cancer [ICD-11: 2C73]
Differential expression of molecule in resistant diseases | ||
The Studied Tissue | Ovary | |
The Specified Disease | Ovarian cancer | |
The Expression Level of Disease Section Compare with the Healthy Individual Tissue | p-value: 8.05E-07; Fold-change: 8.96E-01; Z-score: 4.08E+00 | |
The Expression Level of Disease Section Compare with the Adjacent Tissue | p-value: 8.93E-01; Fold-change: 4.95E-01; Z-score: 5.98E-01 | |
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
|
||
Disease-specific Molecule Abundances | Click to View the Clearer Original Diagram | |
Cervical cancer [ICD-11: 2C77]
Differential expression of molecule in resistant diseases | ||
The Studied Tissue | Cervix uteri | |
The Specified Disease | Cervical cancer | |
The Expression Level of Disease Section Compare with the Healthy Individual Tissue | p-value: 2.39E-07; Fold-change: 5.69E-01; Z-score: 1.98E+00 | |
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
|
||
Disease-specific Molecule Abundances | Click to View the Clearer Original Diagram | |
Tissue-specific Molecule Abundances in Healthy Individuals
References
If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.