General Information of the Molecule (ID: Mol01210)
Name
Very low density lipoprotein receptor (VLDLR) ,Homo sapiens
Synonyms
VLDLR
    Click to Show/Hide
Molecule Type
LncRNA
Gene Name
CDA11
Gene ID
7436
Location
chr9:2621182-2660056[+]
Ensembl ID
ENSG00000147852
HGNC ID
HGNC:12698
        Click to Show/Hide the Complete Species Lineage
Kingdom: Metazoa
Phylum: Chordata
Class: Mammalia
Order: Primates
Family: Hominidae
Genus: Homo
Species: Homo sapiens
Type(s) of Resistant Mechanism of This Molecule
  RTDM: Regulation by the Disease Microenvironment
Drug Resistance Data Categorized by Drug
Approved Drug(s)
2 drug(s) in total
Click to Show/Hide the Full List of Drugs
Doxorubicin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Regulation by the Disease Microenvironment (RTDM) Click to Show/Hide
Disease Class: Esophageal cancer [1]
Resistant Disease Esophageal cancer [ICD-11: 2B70.1]
Resistant Drug Doxorubicin
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
Cell viability Activation hsa05200
In Vitro Model ECA-109 cells Esophagus Homo sapiens (Human) CVCL_6898
Experiment for
Molecule Alteration
qRT-PCR
Experiment for
Drug Resistance
MTT assay; Flow cytometry assay
Mechanism Description Extracellular vesicles released by drug-resistant cells were proved that they could upregulate the expression of ABCG2 in esophageal cancer cells and thus regulate the drug resistance of esophageal cancer cells, which was related to the linc-VLDLR carried by EVs.
Disease Class: Hepatocellular cancer [2]
Resistant Disease Hepatocellular cancer [ICD-11: 2C12.4]
Resistant Drug Doxorubicin
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model Huh-7 cells Liver Homo sapiens (Human) CVCL_0336
HepG2 cells Liver Homo sapiens (Human) CVCL_0027
Hep3B cells Liver Homo sapiens (Human) CVCL_0326
PLC/PRF-5 cells Liver Homo sapiens (Human) CVCL_0485
Experiment for
Molecule Alteration
qRT-PCR
Experiment for
Drug Resistance
MTS assay; Flow cytometry assay
Mechanism Description LincRNA-VLDLR (linc-VLDLR) was significantly up-regulated in malignant hepatocytes. Exposure of HCC cells to diverse anti-cancer agents such as sorafenib, camptothecin, and doxorubicin increased linc-VLDLR expression in cells as well as within EVs released from these cells. Incubation with EVs reduced chemotherapy-induced cell death and also increased linc-VLDLR expression in recipient cells. RNAi-mediated knockdown of linc-VLDLR decreased cell viability and abrogated cell cycle progression. Moreover, knockdown of VLDLR reduced expression of ABCG2 (ATP-binding cassette, sub-family G member 2), whereas over-expression of this protein reduced the effects of VLDLR knockdown on sorafenib-induced cell death. Here, linc-VLDLR is identified as an extracellular vesicle enriched LncRNA that contributes to cellular stress responses.
Sorafenib
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Regulation by the Disease Microenvironment (RTDM) Click to Show/Hide
Disease Class: Hepatocellular cancer [2]
Resistant Disease Hepatocellular cancer [ICD-11: 2C12.4]
Resistant Drug Sorafenib
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model Huh-7 cells Liver Homo sapiens (Human) CVCL_0336
HepG2 cells Liver Homo sapiens (Human) CVCL_0027
Hep3B cells Liver Homo sapiens (Human) CVCL_0326
PLC/PRF-5 cells Liver Homo sapiens (Human) CVCL_0485
Experiment for
Molecule Alteration
qRT-PCR
Experiment for
Drug Resistance
MTS assay; Flow cytometry assay
Mechanism Description LincRNA-VLDLR (linc-VLDLR) was significantly up-regulated in malignant hepatocytes. Exposure of HCC cells to diverse anti-cancer agents such as sorafenib, camptothecin, and doxorubicin increased linc-VLDLR expression in cells as well as within EVs released from these cells. Incubation with EVs reduced chemotherapy-induced cell death and also increased linc-VLDLR expression in recipient cells. RNAi-mediated knockdown of linc-VLDLR decreased cell viability and abrogated cell cycle progression. Moreover, knockdown of VLDLR reduced expression of ABCG2 (ATP-binding cassette, sub-family G member 2), whereas over-expression of this protein reduced the effects of VLDLR knockdown on sorafenib-induced cell death. Here, linc-VLDLR is identified as an extracellular vesicle enriched LncRNA that contributes to cellular stress responses.
Disease Class: Hepatocellular carcinoma [2]
Resistant Disease Hepatocellular carcinoma [ICD-11: 2C12.2]
Resistant Drug Sorafenib
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model Huh-7 cells Liver Homo sapiens (Human) CVCL_0336
HepG2 cells Liver Homo sapiens (Human) CVCL_0027
Hep3B cells Liver Homo sapiens (Human) CVCL_0326
PLC/PRF-5 cells Liver Homo sapiens (Human) CVCL_0485
Experiment for
Molecule Alteration
qRT-PCR
Experiment for
Drug Resistance
MTS assay; Flow cytometry assay
Mechanism Description LincRNA-VLDLR (linc-VLDLR) was significantly up-regulated in malignant hepatocytes. Exposure of HCC cells to diverse anti-cancer agents such as sorafenib, camptothecin, and doxorubicin increased linc-VLDLR expression in cells as well as within EVs released from these cells. Incubation with EVs reduced chemotherapy-induced cell death and also increased linc-VLDLR expression in recipient cells. RNAi-mediated knockdown of linc-VLDLR decreased cell viability and abrogated cell cycle progression. Moreover, knockdown of VLDLR reduced expression of ABCG2 (ATP-binding cassette, sub-family G member 2), whereas over-expression of this protein reduced the effects of VLDLR knockdown on sorafenib-induced cell death. Here, linc-VLDLR is identified as an extracellular vesicle enriched LncRNA that contributes to cellular stress responses.
Clinical Trial Drug(s)
1 drug(s) in total
Click to Show/Hide the Full List of Drugs
Camptothecin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Regulation by the Disease Microenvironment (RTDM) Click to Show/Hide
Disease Class: Hepatocellular cancer [2]
Resistant Disease Hepatocellular cancer [ICD-11: 2C12.4]
Resistant Drug Camptothecin
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model Huh-7 cells Liver Homo sapiens (Human) CVCL_0336
HepG2 cells Liver Homo sapiens (Human) CVCL_0027
Hep3B cells Liver Homo sapiens (Human) CVCL_0326
PLC/PRF-5 cells Liver Homo sapiens (Human) CVCL_0485
Experiment for
Molecule Alteration
qRT-PCR
Experiment for
Drug Resistance
MTS assay; Flow cytometry assay
Mechanism Description LincRNA-VLDLR (linc-VLDLR) was significantly up-regulated in malignant hepatocytes. Exposure of HCC cells to diverse anti-cancer agents such as sorafenib, camptothecin, and doxorubicin increased linc-VLDLR expression in cells as well as within EVs released from these cells. Incubation with EVs reduced chemotherapy-induced cell death and also increased linc-VLDLR expression in recipient cells. RNAi-mediated knockdown of linc-VLDLR decreased cell viability and abrogated cell cycle progression. Moreover, knockdown of VLDLR reduced expression of ABCG2 (ATP-binding cassette, sub-family G member 2), whereas over-expression of this protein reduced the effects of VLDLR knockdown on sorafenib-induced cell death. Here, linc-VLDLR is identified as an extracellular vesicle enriched LncRNA that contributes to cellular stress responses.
Disease- and Tissue-specific Abundances of This Molecule
ICD Disease Classification 02
Click to Show/Hide the Resistance Disease of This Class
Esophageal cancer [ICD-11: 2B70]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Esophagus
The Specified Disease Esophageal carcinoma
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 4.39E-51; Fold-change: 1.59E-01
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Liver cancer [ICD-11: 2C12]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Bile duct
The Specified Disease Cholangiocarcinoma
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 1.03E-03; Fold-change: -5.87E-01
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
The Studied Tissue Liver
The Specified Disease Liver hepatocellular carcinoma
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 9.23E-02; Fold-change: -7.41E-02
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Tissue-specific Molecule Abundances in Healthy Individuals
Click to Show/Hide the Molecule Abundances
References
Ref 1 Effects of long noncoding RNA (linc-VLDLR) existing in extracellular vesicles on the occurrence and multidrug resistance of esophageal cancer cells. Pathol Res Pract. 2019 Mar;215(3):470-477. doi: 10.1016/j.prp.2018.12.033. Epub 2018 Dec 31.
Ref 2 Involvement of extracellular vesicle long noncoding RNA (linc-VLDLR) in tumor cell responses to chemotherapy. Mol Cancer Res. 2014 Oct;12(10):1377-87. doi: 10.1158/1541-7786.MCR-13-0636. Epub 2014 May 29.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.