General Information of the Disease (ID: DIS00136)
Name
Bacterial genitourinary infection
ICD
ICD-11: GA0Z-GC8Z
Resistance Map
Type(s) of Resistant Mechanism of This Disease
  DISM: Drug Inactivation by Structure Modification
Drug Resistance Data Categorized by Drug
Approved Drug(s)
5 drug(s) in total
Click to Show/Hide the Full List of Drugs
Dibekacin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [1]
Resistant Disease Gram-negative pathogens infection [ICD-11: 1B74-1G40]
Molecule Alteration Expression
Up-regulation
Resistant Drug Dibekacin
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
Gentamicin A
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [1]
Resistant Disease Gram-negative pathogens infection [ICD-11: 1B74-1G40]
Molecule Alteration Expression
Up-regulation
Resistant Drug Gentamicin A
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
Kanamycin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [1]
Resistant Disease Gram-negative pathogens infection [ICD-11: 1B74-1G40]
Molecule Alteration Expression
Up-regulation
Resistant Drug Kanamycin
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
Sisomicin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [1]
Resistant Disease Gram-negative pathogens infection [ICD-11: 1B74-1G40]
Molecule Alteration Expression
Up-regulation
Resistant Drug Sisomicin
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
Tobramycin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Key Molecule: Bifunctional AAC/APH (AAC/APH) [1]
Resistant Disease Gram-negative pathogens infection [ICD-11: 1B74-1G40]
Molecule Alteration Expression
Up-regulation
Resistant Drug Tobramycin
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli BL21(DE3) 469008
Escherichia coli JM83 562
Experiment for
Molecule Alteration
SDS-PAGE assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Aminoglycoside 2"-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci.APH(2")-If. This enzyme confers resistance to the 4,6-disubstituted aminoglycosides kanamycin, tobramycin, dibekacin, gentamicin, and sisomicin, but not to arbekacin, amikacin, isepamicin, or netilmicin.
References
Ref 1 Novel aminoglycoside 2''-phosphotransferase identified in a gram-negative pathogen. Antimicrob Agents Chemother. 2013 Jan;57(1):452-7. doi: 10.1128/AAC.02049-12. Epub 2012 Nov 5.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.