General Information of the Molecule (ID: Mol01028)
Name
Outer membrane porin (OMP38) ,Burkholderia pseudomallei
Synonyms
omp38; BURPS1710b_0261; Outer membrane porin
    Click to Show/Hide
Molecule Type
Protein
Gene Name
omp38
Gene ID
56594131
Sequence
MKKFAVAAAGLAVATGAHASDGSVTLFGLIDAGVSYVSNEGGKRNVYFDDGIAVPNLWGL
RGTEDLGGGAKAIFELTSQYALGNGAALPTPGSMFSRTALVGLWSERLGSVTLGQQYDFM
TDSLTFGSFDGAFRYGGLYNFRQGPFSKLGIPDNPTGSFDFDRLAGSSRVPNSVKYTSAN
LNGLVFGLMYGFGNQAGGGLAANSTVSAGLKYETGSFALGAAYVEVKYPQMNNGHDGLRN
WGLGARYALSAFDLNLLYTNTRNTLTGAAIDVIQAGVRYVGAPWTIGANYEYMKGNAQLD
RNYAHQVTAAAQYALSKRTSAYVETVYQYAGGSAGAHAWINGVMGPDAQSSSRSQFLARI
GMLTRF
    Click to Show/Hide
Uniprot ID
Q3JXM5_BURP1
        Click to Show/Hide the Complete Species Lineage
Kingdom: N.A.
Phylum: Proteobacteria
Class: Betaproteobacteria
Order: Burkholderiales
Family: Burkholderiaceae
Genus: Burkholderia
Species: Burkholderia pseudomallei
Type(s) of Resistant Mechanism of This Molecule
  IDUE: Irregularity in Drug Uptake and Drug Efflux
Drug Resistance Data Categorized by Drug
Approved Drug(s)
10 drug(s) in total
Click to Show/Hide the Full List of Drugs
Amoxicillin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Disease Class: Melioidosis [1], [2]
Resistant Disease Melioidosis [ICD-11: 1C42.0]
Resistant Drug Amoxicillin
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Escherichia coli BL21(DE3) 469008
Burkholderia pseudomallei isolates 28450
Experiment for
Molecule Alteration
Whole genome sequence assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Bps is highly resistant to many antimicrobial agents and this resistance may result from the low drug permeability of outer membrane proteins, known as porins.An Escherichia coli strain defective in most porins, but expressing BpsOmp38, exhibited considerably lower antimicrobial susceptibility than the control strain. In addition, mutation of Tyr119, the most prominent pore-lining residue in BpsOmp38, markedly altered membrane permeability, substitution with Ala (mutant BpsOmp38Y119A) enhanced uptake of the antimicrobial agents, while substitution with Phe (mutant BpsOmp38Y119F) inhibited uptake.
Benzylpenicillin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Disease Class: Melioidosis [1], [2]
Resistant Disease Melioidosis [ICD-11: 1C42.0]
Resistant Drug Benzylpenicillin
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Escherichia coli BL21(DE3) 469008
Burkholderia pseudomallei isolates 28450
Experiment for
Molecule Alteration
Whole genome sequence assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Bps is highly resistant to many antimicrobial agents and this resistance may result from the low drug permeability of outer membrane proteins, known as porins.An Escherichia coli strain defective in most porins, but expressing BpsOmp38, exhibited considerably lower antimicrobial susceptibility than the control strain. In addition, mutation of Tyr119, the most prominent pore-lining residue in BpsOmp38, markedly altered membrane permeability, substitution with Ala (mutant BpsOmp38Y119A) enhanced uptake of the antimicrobial agents, while substitution with Phe (mutant BpsOmp38Y119F) inhibited uptake.
Cefepime
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Disease Class: Melioidosis [1], [2]
Resistant Disease Melioidosis [ICD-11: 1C42.0]
Resistant Drug Cefepime
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Escherichia coli BL21(DE3) 469008
Burkholderia pseudomallei isolates 28450
Experiment for
Molecule Alteration
Whole genome sequence assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Bps is highly resistant to many antimicrobial agents and this resistance may result from the low drug permeability of outer membrane proteins, known as porins.An Escherichia coli strain defective in most porins, but expressing BpsOmp38, exhibited considerably lower antimicrobial susceptibility than the control strain. In addition, mutation of Tyr119, the most prominent pore-lining residue in BpsOmp38, markedly altered membrane permeability, substitution with Ala (mutant BpsOmp38Y119A) enhanced uptake of the antimicrobial agents, while substitution with Phe (mutant BpsOmp38Y119F) inhibited uptake.
Cefoxitin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Disease Class: Melioidosis [1], [2]
Resistant Disease Melioidosis [ICD-11: 1C42.0]
Resistant Drug Cefoxitin
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Escherichia coli BL21(DE3) 469008
Burkholderia pseudomallei isolates 28450
Experiment for
Molecule Alteration
Whole genome sequence assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Bps is highly resistant to many antimicrobial agents and this resistance may result from the low drug permeability of outer membrane proteins, known as porins.An Escherichia coli strain defective in most porins, but expressing BpsOmp38, exhibited considerably lower antimicrobial susceptibility than the control strain. In addition, mutation of Tyr119, the most prominent pore-lining residue in BpsOmp38, markedly altered membrane permeability, substitution with Ala (mutant BpsOmp38Y119A) enhanced uptake of the antimicrobial agents, while substitution with Phe (mutant BpsOmp38Y119F) inhibited uptake.
Ciprofloxacin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Disease Class: Melioidosis [1], [2]
Resistant Disease Melioidosis [ICD-11: 1C42.0]
Resistant Drug Ciprofloxacin
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Escherichia coli BL21(DE3) 469008
Burkholderia pseudomallei isolates 28450
Experiment for
Molecule Alteration
Whole genome sequence assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Bps is highly resistant to many antimicrobial agents and this resistance may result from the low drug permeability of outer membrane proteins, known as porins.An Escherichia coli strain defective in most porins, but expressing BpsOmp38, exhibited considerably lower antimicrobial susceptibility than the control strain. In addition, mutation of Tyr119, the most prominent pore-lining residue in BpsOmp38, markedly altered membrane permeability, substitution with Ala (mutant BpsOmp38Y119A) enhanced uptake of the antimicrobial agents, while substitution with Phe (mutant BpsOmp38Y119F) inhibited uptake.
Doripenem
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Disease Class: Melioidosis [1], [2]
Resistant Disease Melioidosis [ICD-11: 1C42.0]
Resistant Drug Doripenem
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Escherichia coli BL21(DE3) 469008
Burkholderia pseudomallei isolates 28450
Experiment for
Molecule Alteration
Whole genome sequence assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Bps is highly resistant to many antimicrobial agents and this resistance may result from the low drug permeability of outer membrane proteins, known as porins.An Escherichia coli strain defective in most porins, but expressing BpsOmp38, exhibited considerably lower antimicrobial susceptibility than the control strain. In addition, mutation of Tyr119, the most prominent pore-lining residue in BpsOmp38, markedly altered membrane permeability, substitution with Ala (mutant BpsOmp38Y119A) enhanced uptake of the antimicrobial agents, while substitution with Phe (mutant BpsOmp38Y119F) inhibited uptake.
Disease Class: Melioidosis [1], [2]
Resistant Disease Melioidosis [ICD-11: 1C42.0]
Resistant Drug Doripenem
Molecule Alteration Missense mutation
p.Y119F
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Escherichia coli BL21(DE3) 469008
Burkholderia pseudomallei isolates 28450
Experiment for
Molecule Alteration
Whole genome sequence assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Bps is highly resistant to many antimicrobial agents and this resistance may result from the low drug permeability of outer membrane proteins, known as porins.An Escherichia coli strain defective in most porins, but expressing BpsOmp38, exhibited considerably lower antimicrobial susceptibility than the control strain. In addition, mutation of Tyr119, the most prominent pore-lining residue in BpsOmp38, markedly altered membrane permeability, substitution with Ala (mutant BpsOmp38Y119A) enhanced uptake of the antimicrobial agents, while substitution with Phe (mutant BpsOmp38Y119F) inhibited uptake.
Enrofloxacin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Disease Class: Melioidosis [1], [2]
Resistant Disease Melioidosis [ICD-11: 1C42.0]
Resistant Drug Enrofloxacin
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Escherichia coli BL21(DE3) 469008
Burkholderia pseudomallei isolates 28450
Experiment for
Molecule Alteration
Whole genome sequence assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Bps is highly resistant to many antimicrobial agents and this resistance may result from the low drug permeability of outer membrane proteins, known as porins.An Escherichia coli strain defective in most porins, but expressing BpsOmp38, exhibited considerably lower antimicrobial susceptibility than the control strain. In addition, mutation of Tyr119, the most prominent pore-lining residue in BpsOmp38, markedly altered membrane permeability, substitution with Ala (mutant BpsOmp38Y119A) enhanced uptake of the antimicrobial agents, while substitution with Phe (mutant BpsOmp38Y119F) inhibited uptake.
Gentamicin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Disease Class: Melioidosis [1], [2]
Resistant Disease Melioidosis [ICD-11: 1C42.0]
Resistant Drug Gentamicin
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Escherichia coli BL21(DE3) 469008
Burkholderia pseudomallei isolates 28450
Experiment for
Molecule Alteration
Whole genome sequence assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Bps is highly resistant to many antimicrobial agents and this resistance may result from the low drug permeability of outer membrane proteins, known as porins.An Escherichia coli strain defective in most porins, but expressing BpsOmp38, exhibited considerably lower antimicrobial susceptibility than the control strain. In addition, mutation of Tyr119, the most prominent pore-lining residue in BpsOmp38, markedly altered membrane permeability, substitution with Ala (mutant BpsOmp38Y119A) enhanced uptake of the antimicrobial agents, while substitution with Phe (mutant BpsOmp38Y119F) inhibited uptake.
Norfloxacin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Disease Class: Melioidosis [1], [2]
Resistant Disease Melioidosis [ICD-11: 1C42.0]
Resistant Drug Norfloxacin
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Escherichia coli BL21(DE3) 469008
Burkholderia pseudomallei isolates 28450
Experiment for
Molecule Alteration
Whole genome sequence assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Bps is highly resistant to many antimicrobial agents and this resistance may result from the low drug permeability of outer membrane proteins, known as porins.An Escherichia coli strain defective in most porins, but expressing BpsOmp38, exhibited considerably lower antimicrobial susceptibility than the control strain. In addition, mutation of Tyr119, the most prominent pore-lining residue in BpsOmp38, markedly altered membrane permeability, substitution with Ala (mutant BpsOmp38Y119A) enhanced uptake of the antimicrobial agents, while substitution with Phe (mutant BpsOmp38Y119F) inhibited uptake.
Imipenem
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Disease Class: Melioidosis [1], [2]
Resistant Disease Melioidosis [ICD-11: 1C42.0]
Resistant Drug Imipenem
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Escherichia coli BL21(DE3) 469008
Burkholderia pseudomallei isolates 28450
Experiment for
Molecule Alteration
Whole genome sequence assay
Experiment for
Drug Resistance
Broth microdilution method assay
Mechanism Description Bps is highly resistant to many antimicrobial agents and this resistance may result from the low drug permeability of outer membrane proteins, known as porins.An Escherichia coli strain defective in most porins, but expressing BpsOmp38, exhibited considerably lower antimicrobial susceptibility than the control strain. In addition, mutation of Tyr119, the most prominent pore-lining residue in BpsOmp38, markedly altered membrane permeability, substitution with Ala (mutant BpsOmp38Y119A) enhanced uptake of the antimicrobial agents, while substitution with Phe (mutant BpsOmp38Y119F) inhibited uptake.
References
Ref 1 Functional reconstitution, gene isolation and topology modelling of porins from Burkholderia pseudomallei and Burkholderia thailandensis. Biochem J. 2004 Feb 1;377(Pt 3):579-87. doi: 10.1042/BJ20031118.
Ref 2 Porin involvement in cephalosporin and carbapenem resistance of Burkholderia pseudomallei. PLoS One. 2014 May 1;9(5):e95918. doi: 10.1371/journal.pone.0095918. eCollection 2014.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.