Drug Information
Drug (ID: DG00048) and It's Reported Resistant Information
Name |
Doripenem
|
||||
---|---|---|---|---|---|
Synonyms |
Doribax; S 4661; S-4661; Doripenem (USAN/INN); (4R,5S,6S)-6-[(1R)-1-hydroxyethyl]-4-methyl-7-oxo-3-[(3S,5S)-5-[(sulfamoylamino)methyl]pyrrolidin-3-yl]sulfanyl-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid
Click to Show/Hide
|
||||
Indication |
In total 2 Indication(s)
|
||||
Structure | |||||
Drug Resistance Disease(s) |
Disease(s) with Clinically Reported Resistance for This Drug
(2 diseases)
Malaria [ICD-11: 1F45]
[1]
|
||||
Target | Bacterial Dihydropteroate synthetase (Bact folP) | DHPS_ECOLI | [1] | ||
Click to Show/Hide the Molecular Information and External Link(s) of This Drug | |||||
Formula |
C15H24N4O6S2
|
||||
IsoSMILES |
C[C@@H]1[C@@H]2[C@H](C(=O)N2C(=C1S[C@H]3C[C@H](NC3)CNS(=O)(=O)N)C(=O)O)[C@@H](C)O
|
||||
InChI |
1S/C15H24N4O6S2/c1-6-11-10(7(2)20)14(21)19(11)12(15(22)23)13(6)26-9-3-8(17-5-9)4-18-27(16,24)25/h6-11,17-18,20H,3-5H2,1-2H3,(H,22,23)(H2,16,24,25)/t6-,7-,8+,9+,10-,11-/m1/s1
|
||||
InChIKey |
AVAACINZEOAHHE-VFZPANTDSA-N
|
||||
PubChem CID | |||||
ChEBI ID | |||||
TTD Drug ID | |||||
INTEDE ID | |||||
DrugBank ID |
Type(s) of Resistant Mechanism of This Drug
DISM: Drug Inactivation by Structure Modification
IDUE: Irregularity in Drug Uptake and Drug Efflux
Drug Resistance Data Categorized by Their Corresponding Diseases
ICD-01: Infectious/parasitic diseases
Melioidosis [ICD-11: 1C42]
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Irregularity in Drug Uptake and Drug Efflux (IDUE) | ||||
Key Molecule: Outer membrane porin (OMP38) | [2], [3] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Melioidosis [ICD-11: 1C42.0] | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Escherichia coli | 668369 | ||
Escherichia coli BL21(DE3) | 469008 | |||
Burkholderia pseudomallei isolates | 28450 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | Bps is highly resistant to many antimicrobial agents and this resistance may result from the low drug permeability of outer membrane proteins, known as porins.An Escherichia coli strain defective in most porins, but expressing BpsOmp38, exhibited considerably lower antimicrobial susceptibility than the control strain. In addition, mutation of Tyr119, the most prominent pore-lining residue in BpsOmp38, markedly altered membrane permeability, substitution with Ala (mutant BpsOmp38Y119A) enhanced uptake of the antimicrobial agents, while substitution with Phe (mutant BpsOmp38Y119F) inhibited uptake. | |||
Key Molecule: Outer membrane porin (OMP38) | [2], [3] | |||
Molecule Alteration | Missense mutation | p.Y119F |
||
Resistant Disease | Melioidosis [ICD-11: 1C42.0] | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Escherichia coli | 668369 | ||
Escherichia coli BL21(DE3) | 469008 | |||
Burkholderia pseudomallei isolates | 28450 | |||
Experiment for Molecule Alteration |
Whole genome sequence assay | |||
Experiment for Drug Resistance |
Broth microdilution method assay | |||
Mechanism Description | Bps is highly resistant to many antimicrobial agents and this resistance may result from the low drug permeability of outer membrane proteins, known as porins.An Escherichia coli strain defective in most porins, but expressing BpsOmp38, exhibited considerably lower antimicrobial susceptibility than the control strain. In addition, mutation of Tyr119, the most prominent pore-lining residue in BpsOmp38, markedly altered membrane permeability, substitution with Ala (mutant BpsOmp38Y119A) enhanced uptake of the antimicrobial agents, while substitution with Phe (mutant BpsOmp38Y119F) inhibited uptake. |
Malaria [ICD-11: 1F45]
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Drug Inactivation by Structure Modification (DISM) | ||||
Key Molecule: CAM-1 carbapenemase (CAM1) | [1] | |||
Molecule Alteration | Expression | Up-regulation |
||
Resistant Disease | Pseudomonas infection [ICD-11: 1F45.1] | |||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | Escherichia coli TOP10 | 83333 | ||
Pseudomonas aeruginosa N17-01167 | 287 | |||
Pseudomonas aeruginosa N17-01173 | 287 | |||
Pseudomonas aeruginosa N17-02436 | 287 | |||
Pseudomonas aeruginosa N17-02437 | 287 | |||
Experiment for Molecule Alteration |
Whole genome sequencing assay | |||
Experiment for Drug Resistance |
Vitek 2 assay; Etest assay | |||
Mechanism Description | A novel class B Beta-lactamase gene, blaCAM-1, exhibited resistance to imipenem, meropenem, doripenem, cefotaxime, ceftazidime, cefoxitin, piperacillin/tazobactam, ceftazidime/avibactam and ceftolozane/tazobactam. |
References
If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.