Drug (ID: DG00224) and It's Reported Resistant Information
Name
Trichostatin A
Synonyms
Trichostatin A; 58880-19-6; Trichostatin A (TSA); TSA; Trichostatin; Tricostatin A; UNII-3X2S926L3Z; CHEBI:46024; (2E,4E,6R)-7-[4-(Dimethylamino)phenyl]-N-hydroxy-4,6-dimethyl-7-oxohepta-2,4-dienamide; GNF-PF-1011; RTKIYFITIVXBLE-QEQCGCAPSA-N; 3X2S926L3Z; 7-(4-(Dimethylamino)phenyl)-N-hydroxy-4,6-dimethyl-7-oxo-2,4-heptadienamide; 2,4-Heptadienamide, 7-(4-(dimethylamino)phenyl)-N-hydroxy-4,6-dimethyl-7-oxo-; 7-[4-(DIMETHYLAMINO)PHENYL]-N-HYDROXY-4,6-DIMETHYL-7-OXO-2,4-HEPTADIENAMIDE
    Click to Show/Hide
Indication
In total 1 Indication(s)
Solid tumour/cancer [ICD-11: 2A00-2F9Z]
Investigative
[1]
Structure
Drug Resistance Disease(s)
Disease(s) with Resistance Information Discovered by Cell Line Test for This Drug (5 diseases)
Acute myeloid leukemia [ICD-11: 2A60]
[1]
Bladder cancer [ICD-11: 2C94]
[1]
Colon cancer [ICD-11: 2B90]
[1]
Gastric cancer [ICD-11: 2B72]
[1]
Prostate cancer [ICD-11: 2C82]
[1]
Target Histone deacetylase (HDAC) NOUNIPROTAC [1]
Click to Show/Hide the Molecular Information and External Link(s) of This Drug
Formula
C17H22N2O3
IsoSMILES
C[C@H](/C=C(\\C)/C=C/C(=O)NO)C(=O)C1=CC=C(C=C1)N(C)C
InChI
1S/C17H22N2O3/c1-12(5-10-16(20)18-22)11-13(2)17(21)14-6-8-15(9-7-14)19(3)4/h5-11,13,22H,1-4H3,(H,18,20)/b10-5+,12-11+/t13-/m1/s1
InChIKey
RTKIYFITIVXBLE-QEQCGCAPSA-N
PubChem CID
444732
ChEBI ID
CHEBI:46024
TTD Drug ID
D0NF6F
DrugBank ID
DB04297
Type(s) of Resistant Mechanism of This Drug
  EADR: Epigenetic Alteration of DNA, RNA or Protein
  UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Their Corresponding Diseases
ICD-02: Benign/in-situ/malignant neoplasm
Click to Show/Hide the Resistance Disease of This Class
Acute myeloid leukemia [ICD-11: 2A60]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
  Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Key Molecule: Endoplasmic reticulum chaperone BiP (HSPA5) [1]
Resistant Disease Adult acute myeloid leukemia [ICD-11: 2A60.1]
Molecule Alteration Expression
Up-regulation
Differential expression of the molecule in resistant disease
Classification of Disease Acute myeloid leukemia [ICD-11: 2A60]
The Specified Disease Acute myelocytic leukemia
The Studied Tissue Bone marrow
The Expression Level of Disease Section Compare with the Healthy Individual Tissue
p-value: 7.36E-14
Fold-change: 6.88E-02
Z-score: 7.87E+00
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model HL60 cells Peripheral blood Homo sapiens (Human) CVCL_0002
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
  Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Key Molecule: hsa-mir-181a [1]
Resistant Disease Adult acute myeloid leukemia [ICD-11: 2A60.1]
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model HL60 cells Peripheral blood Homo sapiens (Human) CVCL_0002
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Key Molecule: hsa-miR-199a-5p [1]
Resistant Disease Adult acute myeloid leukemia [ICD-11: 2A60.1]
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model HL60 cells Peripheral blood Homo sapiens (Human) CVCL_0002
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Key Molecule: hsa-mir-30d [1]
Resistant Disease Adult acute myeloid leukemia [ICD-11: 2A60.1]
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model HCT116 cells Colon Homo sapiens (Human) CVCL_0291
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Bladder cancer [ICD-11: 2C94]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
  Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Key Molecule: Endoplasmic reticulum chaperone BiP (HSPA5) [1]
Resistant Disease Bladder carcinoma [ICD-11: 2C94.1]
Molecule Alteration Expression
Up-regulation
Differential expression of the molecule in resistant disease
Classification of Disease Bladder cancer [ICD-11: 2C94]
The Specified Disease Bladder cancer
The Studied Tissue Bladder tissue
The Expression Level of Disease Section Compare with the Healthy Individual Tissue
p-value: 9.58E-01
Fold-change: 6.66E-04
Z-score: 5.39E-02
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model J82 cells Bladder Homo sapiens (Human) CVCL_0359
UM-UC-3 cells Bladder Homo sapiens (Human) CVCL_1783
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
  Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Key Molecule: hsa-mir-181a [1]
Resistant Disease Bladder carcinoma [ICD-11: 2C94.1]
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model J82 cells Bladder Homo sapiens (Human) CVCL_0359
UM-UC-3 cells Bladder Homo sapiens (Human) CVCL_1783
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Key Molecule: hsa-miR-199a-5p [1]
Resistant Disease Bladder carcinoma [ICD-11: 2C94.1]
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model J82 cells Bladder Homo sapiens (Human) CVCL_0359
UM-UC-3 cells Bladder Homo sapiens (Human) CVCL_1783
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Key Molecule: hsa-mir-30d [1]
Resistant Disease Bladder carcinoma [ICD-11: 2C94.1]
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model BGC-823 cells Gastric Homo sapiens (Human) CVCL_3360
MGC-803 cells Gastric Homo sapiens (Human) CVCL_5334
SGC7901 cells Gastric Homo sapiens (Human) CVCL_0520
GES-1 cells Gastric Homo sapiens (Human) CVCL_EQ22
MkN-45 cells Gastric Homo sapiens (Human) CVCL_0434
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Colon cancer [ICD-11: 2B90]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
  Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Key Molecule: Endoplasmic reticulum chaperone BiP (HSPA5) [1]
Resistant Disease Colon carcinoma [ICD-11: 2B90.2]
Molecule Alteration Expression
Up-regulation
Differential expression of the molecule in resistant disease
Classification of Disease Colon cancer [ICD-11: 2B90]
The Specified Disease Colon cancer
The Studied Tissue Colon tissue
The Expression Level of Disease Section Compare with the Healthy Individual Tissue
p-value: 2.94E-01
Fold-change: 5.33E-03
Z-score: 1.05E+00
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model HCT116 cells Colon Homo sapiens (Human) CVCL_0291
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
  Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Key Molecule: hsa-mir-181a [1]
Resistant Disease Colon carcinoma [ICD-11: 2B90.2]
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model HCT116 cells Colon Homo sapiens (Human) CVCL_0291
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Key Molecule: hsa-miR-199a-5p [1]
Resistant Disease Colon carcinoma [ICD-11: 2B90.2]
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model HCT116 cells Colon Homo sapiens (Human) CVCL_0291
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Key Molecule: hsa-mir-30d [1]
Resistant Disease Colon carcinoma [ICD-11: 2B90.2]
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model J82 cells Bladder Homo sapiens (Human) CVCL_0359
UM-UC-3 cells Bladder Homo sapiens (Human) CVCL_1783
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Gastric cancer [ICD-11: 2B72]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
  Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Key Molecule: Endoplasmic reticulum chaperone BiP (HSPA5) [1]
Resistant Disease Gastric cancer [ICD-11: 2B72.1]
Molecule Alteration Expression
Up-regulation
Differential expression of the molecule in resistant disease
Classification of Disease Gastric cancer [ICD-11: 2B72]
The Specified Disease Gastric cancer
The Studied Tissue Gastric tissue
The Expression Level of Disease Section Compare with the Healthy Individual Tissue
p-value: 5.07E-01
Fold-change: 4.51E-02
Z-score: 8.01E-01
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model BGC-823 cells Gastric Homo sapiens (Human) CVCL_3360
MGC-803 cells Gastric Homo sapiens (Human) CVCL_5334
SGC7901 cells Gastric Homo sapiens (Human) CVCL_0520
GES-1 cells Gastric Homo sapiens (Human) CVCL_EQ22
MkN-45 cells Gastric Homo sapiens (Human) CVCL_0434
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
  Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Key Molecule: hsa-miR-199a-5p [1]
Resistant Disease Gastric cancer [ICD-11: 2B72.1]
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model BGC-823 cells Gastric Homo sapiens (Human) CVCL_3360
MGC-803 cells Gastric Homo sapiens (Human) CVCL_5334
SGC7901 cells Gastric Homo sapiens (Human) CVCL_0520
GES-1 cells Gastric Homo sapiens (Human) CVCL_EQ22
MkN-45 cells Gastric Homo sapiens (Human) CVCL_0434
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Prostate cancer [ICD-11: 2C82]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
  Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Key Molecule: Endoplasmic reticulum chaperone BiP (HSPA5) [1]
Resistant Disease Prostate cancer [ICD-11: 2C82.0]
Molecule Alteration Expression
Up-regulation
Differential expression of the molecule in resistant disease
Classification of Disease Prostate cancer [ICD-11: 2C82]
The Specified Disease Prostate cancer
The Studied Tissue Prostate
The Expression Level of Disease Section Compare with the Healthy Individual Tissue
p-value: 3.92E-01
Fold-change: 1.27E-02
Z-score: 8.69E-01
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model C4-2B cells Prostate Homo sapiens (Human) CVCL_4784
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
  Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Key Molecule: hsa-mir-181a [1]
Resistant Disease Prostate cancer [ICD-11: 2C82.0]
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model C4-2B cells Prostate Homo sapiens (Human) CVCL_4784
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Key Molecule: hsa-mir-30d [1]
Resistant Disease Prostate cancer [ICD-11: 2C82.0]
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model HL60 cells Peripheral blood Homo sapiens (Human) CVCL_0002
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
References
Ref 1 miR-30d, miR-181a and miR-199a-5p cooperatively suppress the endoplasmic reticulum chaperone and signaling regulator GRP78 in cancer. Oncogene. 2013 Sep 26;32(39):4694-701. doi: 10.1038/onc.2012.483. Epub 2012 Oct 22.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Yu.