General Information of the Molecule (ID: Mol01002)
Name
Metallo-beta-lactamase (VIM1) ,Achromobacter denitrificans
Synonyms
blaVIM-1; VIM-1 metallo-beta-lactamase
    Click to Show/Hide
Molecule Type
Protein
Gene Name
blaVIM-1
Sequence
MLKVISSLLVYMTASVMAVASPLAHSGEPSGEYPTVNEIPVGEVRLYQIADGVWSHIATQ
SFDGAVYPSNGLIVRDGDELLLIDTAWGAKNTAALLAEIEKQIGLPVTRAVSTHFHDDRV
GGVDVLRAAGVATYASPSTRRLAEAEGNEIPTHSLEGLSSSGDAVRFGPVELFYPGAAHS
TDNLVVYVPSANVLYGGCAVHELSSTSAGNVADADLAEWPTSVERIQKHYPEAEVVIPGH
GLPGGLDLLQHTANVVKAHKNRSVAE
    Click to Show/Hide
Uniprot ID
Q7AZX3_ACHDE
        Click to Show/Hide the Complete Species Lineage
Kingdom: N.A.
Phylum: Proteobacteria
Class: Betaproteobacteria
Order: Burkholderiales
Family: Alcaligenaceae
Genus: Achromobacter
Species: Achromobacter denitrificans
Type(s) of Resistant Mechanism of This Molecule
  DISM: Drug Inactivation by Structure Modification
Drug Resistance Data Categorized by Drug
Approved Drug(s)
9 drug(s) in total
Click to Show/Hide the Full List of Drugs
Ampicillin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Disease Class: Achromobacter xylosoxydans infection [1]
Resistant Disease Achromobacter xylosoxydans infection [ICD-11: 1A00-1C4Z]
Resistant Drug Ampicillin
Molecule Alteration Expression
Inherence
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Achromobacter xylosoxydans subsp. denitrificans AX-22 85698
Escherichia coli MkD-135 562
Pseudomonas aeruginosa 10145/3 287
Experiment for
Molecule Alteration
DNA extraction and Sequencing assay
Experiment for
Drug Resistance
Macrodilution broth method assay
Mechanism Description A. xylosoxydans AX22 exhibited broad-spectrum resistance to Beta-lactams and aminoglycosides. The Beta-lactam resistance pattern (including piperacillin, ceftazidime, and carbapenem resistance) was unusual for this species, and the high-level carbapenem resistance suggested the production of an acquired carbapenemase. In fact, carbapenemase activity was detected in a crude extract of AX22 (specific activity, 184 +/- 12 U/mg of protein), and this activity was reduced (>80%) after incubation of the crude extract with 2 mM EDTA, suggesting the presence of a metallo-Beta-lactamase determinant.
Disease Class: Escherichia coli infection [1]
Resistant Disease Escherichia coli infection [ICD-11: 1A03.0]
Resistant Drug Ampicillin
Molecule Alteration Expression
Acquired
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Achromobacter xylosoxydans subsp. denitrificans AX-22 85698
Escherichia coli MkD-135 562
Pseudomonas aeruginosa 10145/3 287
Experiment for
Molecule Alteration
DNA extraction and Sequencing assay
Experiment for
Drug Resistance
Macrodilution broth method assay
Mechanism Description Electroporation of Escherichia coli DH5alpha with the purified plasmid preparation yielded ampicillin-resistant transformants which contained a plasmid apparently identical to pAX22 (data not shown). DH5alpha(pAX22) produced carbapenemase activity (specific activity of crude extract, 202 +/- 14 U/mg of protein) and, compared to DH5alpha, exhibited a decreased susceptibility to several Beta-lactams.
Aztreonam
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Disease Class: Achromobacter xylosoxydans infection [1]
Resistant Disease Achromobacter xylosoxydans infection [ICD-11: 1A00-1C4Z]
Resistant Drug Aztreonam
Molecule Alteration Expression
Inherence
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Achromobacter xylosoxydans subsp. denitrificans AX-22 85698
Escherichia coli MkD-135 562
Pseudomonas aeruginosa 10145/3 287
Experiment for
Molecule Alteration
DNA extraction and Sequencing assay
Experiment for
Drug Resistance
Macrodilution broth method assay
Mechanism Description A. xylosoxydans AX22 exhibited broad-spectrum resistance to Beta-lactams and aminoglycosides. The Beta-lactam resistance pattern (including piperacillin, ceftazidime, and carbapenem resistance) was unusual for this species, and the high-level carbapenem resistance suggested the production of an acquired carbapenemase. In fact, carbapenemase activity was detected in a crude extract of AX22 (specific activity, 184 +/- 12 U/mg of protein), and this activity was reduced (>80%) after incubation of the crude extract with 2 mM EDTA, suggesting the presence of a metallo-Beta-lactamase determinant.
Disease Class: Escherichia coli infection [1]
Resistant Disease Escherichia coli infection [ICD-11: 1A03.0]
Resistant Drug Aztreonam
Molecule Alteration Expression
Acquired
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Achromobacter xylosoxydans subsp. denitrificans AX-22 85698
Escherichia coli MkD-135 562
Pseudomonas aeruginosa 10145/3 287
Experiment for
Molecule Alteration
DNA extraction and Sequencing assay
Experiment for
Drug Resistance
Macrodilution broth method assay
Mechanism Description Electroporation of Escherichia coli DH5alpha with the purified plasmid preparation yielded ampicillin-resistant transformants which contained a plasmid apparently identical to pAX22 (data not shown). DH5alpha(pAX22) produced carbapenemase activity (specific activity of crude extract, 202 +/- 14 U/mg of protein) and, compared to DH5alpha, exhibited a decreased susceptibility to several Beta-lactams.
Cefepime
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Disease Class: Achromobacter xylosoxydans infection [1]
Resistant Disease Achromobacter xylosoxydans infection [ICD-11: 1A00-1C4Z]
Resistant Drug Cefepime
Molecule Alteration Expression
Inherence
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Achromobacter xylosoxydans subsp. denitrificans AX-22 85698
Escherichia coli MkD-135 562
Pseudomonas aeruginosa 10145/3 287
Experiment for
Molecule Alteration
DNA extraction and Sequencing assay
Experiment for
Drug Resistance
Macrodilution broth method assay
Mechanism Description A. xylosoxydans AX22 exhibited broad-spectrum resistance to Beta-lactams and aminoglycosides. The Beta-lactam resistance pattern (including piperacillin, ceftazidime, and carbapenem resistance) was unusual for this species, and the high-level carbapenem resistance suggested the production of an acquired carbapenemase. In fact, carbapenemase activity was detected in a crude extract of AX22 (specific activity, 184 +/- 12 U/mg of protein), and this activity was reduced (>80%) after incubation of the crude extract with 2 mM EDTA, suggesting the presence of a metallo-Beta-lactamase determinant.
Disease Class: Escherichia coli infection [1]
Resistant Disease Escherichia coli infection [ICD-11: 1A03.0]
Resistant Drug Cefepime
Molecule Alteration Expression
Acquired
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Achromobacter xylosoxydans subsp. denitrificans AX-22 85698
Escherichia coli MkD-135 562
Pseudomonas aeruginosa 10145/3 287
Experiment for
Molecule Alteration
DNA extraction and Sequencing assay
Experiment for
Drug Resistance
Macrodilution broth method assay
Mechanism Description Electroporation of Escherichia coli DH5alpha with the purified plasmid preparation yielded ampicillin-resistant transformants which contained a plasmid apparently identical to pAX22 (data not shown). DH5alpha(pAX22) produced carbapenemase activity (specific activity of crude extract, 202 +/- 14 U/mg of protein) and, compared to DH5alpha, exhibited a decreased susceptibility to several Beta-lactams.
Cefotaxime
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Disease Class: Achromobacter xylosoxydans infection [1]
Resistant Disease Achromobacter xylosoxydans infection [ICD-11: 1A00-1C4Z]
Resistant Drug Cefotaxime
Molecule Alteration Expression
Inherence
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Achromobacter xylosoxydans subsp. denitrificans AX-22 85698
Escherichia coli MkD-135 562
Pseudomonas aeruginosa 10145/3 287
Experiment for
Molecule Alteration
DNA extraction and Sequencing assay
Experiment for
Drug Resistance
Macrodilution broth method assay
Mechanism Description A. xylosoxydans AX22 exhibited broad-spectrum resistance to Beta-lactams and aminoglycosides. The Beta-lactam resistance pattern (including piperacillin, ceftazidime, and carbapenem resistance) was unusual for this species, and the high-level carbapenem resistance suggested the production of an acquired carbapenemase. In fact, carbapenemase activity was detected in a crude extract of AX22 (specific activity, 184 +/- 12 U/mg of protein), and this activity was reduced (>80%) after incubation of the crude extract with 2 mM EDTA, suggesting the presence of a metallo-Beta-lactamase determinant.
Disease Class: Escherichia coli infection [1]
Resistant Disease Escherichia coli infection [ICD-11: 1A03.0]
Resistant Drug Cefotaxime
Molecule Alteration Expression
Acquired
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Achromobacter xylosoxydans subsp. denitrificans AX-22 85698
Escherichia coli MkD-135 562
Pseudomonas aeruginosa 10145/3 287
Experiment for
Molecule Alteration
DNA extraction and Sequencing assay
Experiment for
Drug Resistance
Macrodilution broth method assay
Mechanism Description Electroporation of Escherichia coli DH5alpha with the purified plasmid preparation yielded ampicillin-resistant transformants which contained a plasmid apparently identical to pAX22 (data not shown). DH5alpha(pAX22) produced carbapenemase activity (specific activity of crude extract, 202 +/- 14 U/mg of protein) and, compared to DH5alpha, exhibited a decreased susceptibility to several Beta-lactams.
Ceftazidime
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Disease Class: Achromobacter xylosoxydans infection [1]
Resistant Disease Achromobacter xylosoxydans infection [ICD-11: 1A00-1C4Z]
Resistant Drug Ceftazidime
Molecule Alteration Expression
Inherence
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Achromobacter xylosoxydans subsp. denitrificans AX-22 85698
Escherichia coli MkD-135 562
Pseudomonas aeruginosa 10145/3 287
Experiment for
Molecule Alteration
DNA extraction and Sequencing assay
Experiment for
Drug Resistance
Macrodilution broth method assay
Mechanism Description A. xylosoxydans AX22 exhibited broad-spectrum resistance to Beta-lactams and aminoglycosides. The Beta-lactam resistance pattern (including piperacillin, ceftazidime, and carbapenem resistance) was unusual for this species, and the high-level carbapenem resistance suggested the production of an acquired carbapenemase. In fact, carbapenemase activity was detected in a crude extract of AX22 (specific activity, 184 +/- 12 U/mg of protein), and this activity was reduced (>80%) after incubation of the crude extract with 2 mM EDTA, suggesting the presence of a metallo-Beta-lactamase determinant.
Disease Class: Escherichia coli infection [1]
Resistant Disease Escherichia coli infection [ICD-11: 1A03.0]
Resistant Drug Ceftazidime
Molecule Alteration Expression
Acquired
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Achromobacter xylosoxydans subsp. denitrificans AX-22 85698
Escherichia coli MkD-135 562
Pseudomonas aeruginosa 10145/3 287
Experiment for
Molecule Alteration
DNA extraction and Sequencing assay
Experiment for
Drug Resistance
Macrodilution broth method assay
Mechanism Description Electroporation of Escherichia coli DH5alpha with the purified plasmid preparation yielded ampicillin-resistant transformants which contained a plasmid apparently identical to pAX22 (data not shown). DH5alpha(pAX22) produced carbapenemase activity (specific activity of crude extract, 202 +/- 14 U/mg of protein) and, compared to DH5alpha, exhibited a decreased susceptibility to several Beta-lactams.
Meropenem
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Disease Class: Achromobacter xylosoxydans infection [1]
Resistant Disease Achromobacter xylosoxydans infection [ICD-11: 1A00-1C4Z]
Resistant Drug Meropenem
Molecule Alteration Expression
Inherence
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Achromobacter xylosoxydans subsp. denitrificans AX-22 85698
Escherichia coli MkD-135 562
Pseudomonas aeruginosa 10145/3 287
Experiment for
Molecule Alteration
DNA extraction and Sequencing assay
Experiment for
Drug Resistance
Macrodilution broth method assay
Mechanism Description A. xylosoxydans AX22 exhibited broad-spectrum resistance to Beta-lactams and aminoglycosides. The Beta-lactam resistance pattern (including piperacillin, ceftazidime, and carbapenem resistance) was unusual for this species, and the high-level carbapenem resistance suggested the production of an acquired carbapenemase. In fact, carbapenemase activity was detected in a crude extract of AX22 (specific activity, 184 +/- 12 U/mg of protein), and this activity was reduced (>80%) after incubation of the crude extract with 2 mM EDTA, suggesting the presence of a metallo-Beta-lactamase determinant.
Disease Class: Escherichia coli infection [1]
Resistant Disease Escherichia coli infection [ICD-11: 1A03.0]
Resistant Drug Meropenem
Molecule Alteration Expression
Acquired
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Achromobacter xylosoxydans subsp. denitrificans AX-22 85698
Escherichia coli MkD-135 562
Pseudomonas aeruginosa 10145/3 287
Experiment for
Molecule Alteration
DNA extraction and Sequencing assay
Experiment for
Drug Resistance
Macrodilution broth method assay
Mechanism Description Electroporation of Escherichia coli DH5alpha with the purified plasmid preparation yielded ampicillin-resistant transformants which contained a plasmid apparently identical to pAX22 (data not shown). DH5alpha(pAX22) produced carbapenemase activity (specific activity of crude extract, 202 +/- 14 U/mg of protein) and, compared to DH5alpha, exhibited a decreased susceptibility to several Beta-lactams.
Mezlocillin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Disease Class: Achromobacter xylosoxydans infection [1]
Resistant Disease Achromobacter xylosoxydans infection [ICD-11: 1A00-1C4Z]
Resistant Drug Mezlocillin
Molecule Alteration Expression
Inherence
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Achromobacter xylosoxydans subsp. denitrificans AX-22 85698
Escherichia coli MkD-135 562
Pseudomonas aeruginosa 10145/3 287
Experiment for
Molecule Alteration
DNA extraction and Sequencing assay
Experiment for
Drug Resistance
Macrodilution broth method assay
Mechanism Description A. xylosoxydans AX22 exhibited broad-spectrum resistance to Beta-lactams and aminoglycosides. The Beta-lactam resistance pattern (including piperacillin, ceftazidime, and carbapenem resistance) was unusual for this species, and the high-level carbapenem resistance suggested the production of an acquired carbapenemase. In fact, carbapenemase activity was detected in a crude extract of AX22 (specific activity, 184 +/- 12 U/mg of protein), and this activity was reduced (>80%) after incubation of the crude extract with 2 mM EDTA, suggesting the presence of a metallo-Beta-lactamase determinant.
Disease Class: Escherichia coli infection [1]
Resistant Disease Escherichia coli infection [ICD-11: 1A03.0]
Resistant Drug Mezlocillin
Molecule Alteration Expression
Acquired
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Achromobacter xylosoxydans subsp. denitrificans AX-22 85698
Escherichia coli MkD-135 562
Pseudomonas aeruginosa 10145/3 287
Experiment for
Molecule Alteration
DNA extraction and Sequencing assay
Experiment for
Drug Resistance
Macrodilution broth method assay
Mechanism Description Electroporation of Escherichia coli DH5alpha with the purified plasmid preparation yielded ampicillin-resistant transformants which contained a plasmid apparently identical to pAX22 (data not shown). DH5alpha(pAX22) produced carbapenemase activity (specific activity of crude extract, 202 +/- 14 U/mg of protein) and, compared to DH5alpha, exhibited a decreased susceptibility to several Beta-lactams.
Piperacillin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Disease Class: Achromobacter xylosoxydans infection [1]
Resistant Disease Achromobacter xylosoxydans infection [ICD-11: 1A00-1C4Z]
Resistant Drug Piperacillin
Molecule Alteration Expression
Inherence
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Achromobacter xylosoxydans subsp. denitrificans AX-22 85698
Escherichia coli MkD-135 562
Pseudomonas aeruginosa 10145/3 287
Experiment for
Molecule Alteration
DNA extraction and Sequencing assay
Experiment for
Drug Resistance
Macrodilution broth method assay
Mechanism Description A. xylosoxydans AX22 exhibited broad-spectrum resistance to Beta-lactams and aminoglycosides. The Beta-lactam resistance pattern (including piperacillin, ceftazidime, and carbapenem resistance) was unusual for this species, and the high-level carbapenem resistance suggested the production of an acquired carbapenemase. In fact, carbapenemase activity was detected in a crude extract of AX22 (specific activity, 184 +/- 12 U/mg of protein), and this activity was reduced (>80%) after incubation of the crude extract with 2 mM EDTA, suggesting the presence of a metallo-Beta-lactamase determinant.
Disease Class: Escherichia coli infection [1]
Resistant Disease Escherichia coli infection [ICD-11: 1A03.0]
Resistant Drug Piperacillin
Molecule Alteration Expression
Acquired
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Achromobacter xylosoxydans subsp. denitrificans AX-22 85698
Escherichia coli MkD-135 562
Pseudomonas aeruginosa 10145/3 287
Experiment for
Molecule Alteration
DNA extraction and Sequencing assay
Experiment for
Drug Resistance
Macrodilution broth method assay
Mechanism Description Electroporation of Escherichia coli DH5alpha with the purified plasmid preparation yielded ampicillin-resistant transformants which contained a plasmid apparently identical to pAX22 (data not shown). DH5alpha(pAX22) produced carbapenemase activity (specific activity of crude extract, 202 +/- 14 U/mg of protein) and, compared to DH5alpha, exhibited a decreased susceptibility to several Beta-lactams.
Imipenem
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Disease Class: Achromobacter xylosoxydans infection [1]
Resistant Disease Achromobacter xylosoxydans infection [ICD-11: 1A00-1C4Z]
Resistant Drug Imipenem
Molecule Alteration Expression
Inherence
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Achromobacter xylosoxydans subsp. denitrificans AX-22 85698
Escherichia coli MkD-135 562
Pseudomonas aeruginosa 10145/3 287
Experiment for
Molecule Alteration
DNA extraction and Sequencing assay
Experiment for
Drug Resistance
Macrodilution broth method assay
Mechanism Description A. xylosoxydans AX22 exhibited broad-spectrum resistance to Beta-lactams and aminoglycosides. The Beta-lactam resistance pattern (including piperacillin, ceftazidime, and carbapenem resistance) was unusual for this species, and the high-level carbapenem resistance suggested the production of an acquired carbapenemase. In fact, carbapenemase activity was detected in a crude extract of AX22 (specific activity, 184 +/- 12 U/mg of protein), and this activity was reduced (>80%) after incubation of the crude extract with 2 mM EDTA, suggesting the presence of a metallo-Beta-lactamase determinant.
Disease Class: Escherichia coli infection [1]
Resistant Disease Escherichia coli infection [ICD-11: 1A03.0]
Resistant Drug Imipenem
Molecule Alteration Expression
Acquired
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Achromobacter xylosoxydans subsp. denitrificans AX-22 85698
Escherichia coli MkD-135 562
Pseudomonas aeruginosa 10145/3 287
Experiment for
Molecule Alteration
DNA extraction and Sequencing assay
Experiment for
Drug Resistance
Macrodilution broth method assay
Mechanism Description Electroporation of Escherichia coli DH5alpha with the purified plasmid preparation yielded ampicillin-resistant transformants which contained a plasmid apparently identical to pAX22 (data not shown). DH5alpha(pAX22) produced carbapenemase activity (specific activity of crude extract, 202 +/- 14 U/mg of protein) and, compared to DH5alpha, exhibited a decreased susceptibility to several Beta-lactams.
References
Ref 1 In70 of plasmid pAX22, a bla(VIM-1)-containing integron carrying a new aminoglycoside phosphotransferase gene cassette. Antimicrob Agents Chemother. 2001 Apr;45(4):1249-53. doi: 10.1128/AAC.45.4.1249-1253.2001.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.