Drug (ID: DG00169) and It's Reported Resistant Information
Name
Quinupristin
Synonyms
Quinupristina; Quinupristine; Quinupristinum; SYB; RP 57669; Quinupristin [USAN:INN]; Quinupristina [INN-Spanish]; Quinupristine [INN-French]; Quinupristinum [INN-Latin]; RP-57669; Synercid (TN); Quinupristin (JAN/USAN/INN); 4-[4-(DIMETHYLAMINO)-N-METHYL-L-PHENYLALANINE]-5-[(2S,5R)-5-[[[(3S)-1-AZABICYCLO-[2.2.2]OCT-3-YL]THIO]METHYL]-4-OXO-2-PIPERIDINECARBOXYLIC ACID]VIRGINIAMYCIN; 5delta-(3-quinuclidinyl)thiomethylpristinamycin IA
    Click to Show/Hide
Indication
In total 1 Indication(s)
Bacterial infection [ICD-11: 1A00-1C4Z]
Approved
[1]
Structure
Drug Resistance Disease(s)
Disease(s) with Clinically Reported Resistance for This Drug (3 diseases)
Bacterial meningitis [ICD-11: 1D02]
[2]
Mycobacterial diseases [ICD-11: 1B2Z ]
[3]
Surgical wound infection [ICD-11: NE81]
[1]
Target Bacterial Integral membrane LmrP (Bact lmrP) Q9CDQ3_LACLA [1]
Click to Show/Hide the Molecular Information and External Link(s) of This Drug
Formula
C53H67N9O10S
IsoSMILES
CC[C@@H]1C(=O)N2CCC[C@H]2C(=O)N([C@H](C(=O)N3C[C@H](C(=O)C[C@H]3C(=O)N[C@H](C(=O)O[C@@H]([C@@H](C(=O)N1)NC(=O)C4=C(C=CC=N4)O)C)C5=CC=CC=C5)CS[C@@H]6CN7CCC6CC7)CC8=CC=C(C=C8)N(C)C)C
InChI
1S/C53H67N9O10S/c1-6-37-50(68)61-23-11-14-38(61)51(69)59(5)40(26-32-16-18-36(19-17-32)58(3)4)52(70)62-28-35(30-73-43-29-60-24-20-33(43)21-25-60)42(64)27-39(62)47(65)57-45(34-12-8-7-9-13-34)53(71)72-31(2)44(48(66)55-37)56-49(67)46-41(63)15-10-22-54-46/h7-10,12-13,15-19,22,31,33,35,37-40,43-45,63H,6,11,14,20-21,23-30H2,1-5H3,(H,55,66)(H,56,67)(H,57,65)/t31-,35+,37-,38+,39+,40+,43-,44+,45+/m1/s1
InChIKey
WTHRRGMBUAHGNI-LCYNINFDSA-N
PubChem CID
5388937
TTD Drug ID
D0E2OU
DrugBank ID
DB01369
Type(s) of Resistant Mechanism of This Drug
  ADTT: Aberration of the Drug's Therapeutic Target
  IDUE: Irregularity in Drug Uptake and Drug Efflux
Drug Resistance Data Categorized by Their Corresponding Diseases
ICD-01: Infectious/parasitic diseases
Click to Show/Hide the Resistance Disease of This Class
Mycobacterial diseases [ICD-11: 1B2Z ]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Aberration of the Drug's Therapeutic Target (ADTT) Click to Show/Hide
Key Molecule: 23S ribosomal RNA methyltransferase Erm (ERM39) [3]
Molecule Alteration Missense mutation
Putative initiation codon GTG>CTG
Resistant Disease Mycobacterium fortuitum infection [ICD-11: 1B2Z.2]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Mycobacterium peregrinum ATCC14467 43304
Experiment for
Molecule Alteration
DNA sequencing assay
Experiment for
Drug Resistance
Mueller-Hinton (MH) broth assay
Mechanism Description The erm genes are a diverse collection of methylases that add one or two methyl groups to the adenine at position 2058 (Escherichia coli numbering) of the 23S rRNA; this modification impairs the binding of macrolides to ribosomes, and thus reduces the inhibitory activity of these agents.
Bacterial meningitis [ICD-11: 1D02]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Key Molecule: MsrC (MSRC) [2]
Molecule Alteration Expression
Inherence
Resistant Disease Enterococcus faecium meningitis [ICD-11: 1D01.2]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Enterococcus faecium TX2465 1352
Escherichia coli TX1330 668369
Escherichia coli TX2046 668369
Escherichia coli TX2597 668369
Experiment for
Molecule Alteration
Southern blotting assay
Experiment for
Drug Resistance
Twofold dilutions assay
Mechanism Description The complete sequence (1,479 nucleotides) of msrC, part of which was recently reported by others using a different strain, was determined. This gene was found in 233 of 233 isolates of Enterococcus faecium but in none of 265 other enterococci. Disruption of msrC was associated with a two- to eightfold decrease in MICs of erythromycin azithromycin, tylosin, and quinupristin, suggesting that it may explain in part the apparent greater intrinsic resistance to macrolides of isolates of E. faecium relative to many streptococci. This endogenous, species-specific gene of E. faecium is 53% identical to msr(A), suggesting that it may be a remote progenitor of the acquired macrolide resistance gene found in some isolates of staphylococci.
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Irregularity in Drug Uptake and Drug Efflux (IDUE) Click to Show/Hide
Key Molecule: MsrC (MSRC) [2]
Molecule Alteration Truncated mutantion
Disruption (nt 1251 to 1879)
Sensitive Disease Enterococcus faecium meningitis [ICD-11: 1D01.2]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Escherichia coli 668369
Enterococcus faecium TX2465 1352
Escherichia coli TX1330 668369
Escherichia coli TX2046 668369
Escherichia coli TX2597 668369
Experiment for
Molecule Alteration
Southern blotting assay
Experiment for
Drug Resistance
Twofold dilutions assay
Mechanism Description Disruption of msrC was associated with a two- to eightfold decrease in MICs of erythromycin azithromycin, tylosin, and quinupristin, suggesting that it may explain in part the apparent greater intrinsic resistance to macrolides of isolates of E. faecium relative to many streptococci.
ICD-22: Injury/poisoning/certain external causes consequences
Click to Show/Hide the Resistance Disease of This Class
Surgical wound infection [ICD-11: NE81]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Aberration of the Drug's Therapeutic Target (ADTT) Click to Show/Hide
Key Molecule: Erythromycin resistance protein (ERM38) [1]
Molecule Alteration Expression
Inherence
Resistant Disease Mycobacterium smegmatis infection [ICD-11: 1B2Z.3]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Mycobacterium smegmatis mc2155 246196
Mycobacterium smegmatis mc2155/pMIP12 246196
Mycobacterium smegmatis mc2155/pOMV20 246196
Mycobacterium smegmatis mc2155/pOMV30 246196
Experiment for
Molecule Alteration
MALDI mass spectrometry assay
Experiment for
Drug Resistance
MIC assay
Mechanism Description Erm (38) is a specific dimethyltransferase. The strain obtained drug resistance by adding two methyl groups to A2058 in Mycobacterium 23SrRNA.
Key Molecule: Erythromycin resistance protein (ERM38) [1]
Molecule Alteration Expression
Inherence
Resistant Disease Mycobacterium smegmatis infection [ICD-11: 1B2Z.3]
Experimental Note Identified from the Human Clinical Data
In Vitro Model Mycobacterium smegmatis mc2155 246196
Mycobacterium smegmatis mc2155/pMIP12 246196
Mycobacterium smegmatis mc2155/pOMV20 246196
Mycobacterium smegmatis mc2155/pOMV30 246196
Experiment for
Molecule Alteration
MALDI mass spectrometry assay
Experiment for
Drug Resistance
MIC assay
Mechanism Description Erm (38) is a specific dimethyltransferase. The strain obtained drug resistance by adding two methyl groups to A2058 in Mycobacterium 23SrRNA.
References
Ref 1 Mycobacterium smegmatis Erm(38) is a reluctant dimethyltransferase. Antimicrob Agents Chemother. 2005 Sep;49(9):3803-9. doi: 10.1128/AAC.49.9.3803-3809.2005.
Ref 2 Disruption of an Enterococcus faecium species-specific gene, a homologue of acquired macrolide resistance genes of staphylococci, is associated with an increase in macrolide susceptibility. Antimicrob Agents Chemother. 2001 Jan;45(1):263-6. doi: 10.1128/AAC.45.1.263-266.2001.
Ref 3 Molecular basis of intrinsic macrolide resistance in clinical isolates of Mycobacterium fortuitum. J Antimicrob Chemother. 2005 Feb;55(2):170-7. doi: 10.1093/jac/dkh523. Epub 2004 Dec 8.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.