Drug (ID: DG00224) and It's Reported Resistant Information
Name
Trichostatin A
Synonyms
Trichostatin A; 58880-19-6; Trichostatin A (TSA); TSA; Trichostatin; Tricostatin A; UNII-3X2S926L3Z; CHEBI:46024; (2E,4E,6R)-7-[4-(Dimethylamino)phenyl]-N-hydroxy-4,6-dimethyl-7-oxohepta-2,4-dienamide; GNF-PF-1011; RTKIYFITIVXBLE-QEQCGCAPSA-N; 3X2S926L3Z; 7-(4-(Dimethylamino)phenyl)-N-hydroxy-4,6-dimethyl-7-oxo-2,4-heptadienamide; 2,4-Heptadienamide, 7-(4-(dimethylamino)phenyl)-N-hydroxy-4,6-dimethyl-7-oxo-; 7-[4-(DIMETHYLAMINO)PHENYL]-N-HYDROXY-4,6-DIMETHYL-7-OXO-2,4-HEPTADIENAMIDE
    Click to Show/Hide
Indication
In total 1 Indication(s)
Solid tumour/cancer [ICD-11: 2A00-2F9Z]
Investigative
[1]
Structure
Drug Resistance Disease(s)
Disease(s) with Resistance Information Discovered by Cell Line Test for This Drug (5 diseases)
Acute myeloid leukemia [ICD-11: 2A60]
[1]
Bladder cancer [ICD-11: 2C94]
[1]
Colon cancer [ICD-11: 2B90]
[1]
Gastric cancer [ICD-11: 2B72]
[1]
Prostate cancer [ICD-11: 2C82]
[1]
Target Histone deacetylase (HDAC) NOUNIPROTAC [1]
Click to Show/Hide the Molecular Information and External Link(s) of This Drug
Formula
C17H22N2O3
IsoSMILES
C[C@H](/C=C(\\C)/C=C/C(=O)NO)C(=O)C1=CC=C(C=C1)N(C)C
InChI
1S/C17H22N2O3/c1-12(5-10-16(20)18-22)11-13(2)17(21)14-6-8-15(9-7-14)19(3)4/h5-11,13,22H,1-4H3,(H,18,20)/b10-5+,12-11+/t13-/m1/s1
InChIKey
RTKIYFITIVXBLE-QEQCGCAPSA-N
PubChem CID
444732
ChEBI ID
CHEBI:46024
TTD Drug ID
D0NF6F
DrugBank ID
DB04297
Type(s) of Resistant Mechanism of This Drug
  EADR: Epigenetic Alteration of DNA, RNA or Protein
  UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Their Corresponding Diseases
ICD-02: Benign/in-situ/malignant neoplasm
Click to Show/Hide the Resistance Disease of This Class
Acute myeloid leukemia [ICD-11: 2A60]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Key Molecule: hsa-mir-181a [1]
Molecule Alteration Expression
Down-regulation
Resistant Disease Adult acute myeloid leukemia [ICD-11: 2A60.1]
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model HL60 cells Peripheral blood Homo sapiens (Human) CVCL_0002
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Key Molecule: hsa-miR-199a-5p [1]
Molecule Alteration Expression
Down-regulation
Resistant Disease Adult acute myeloid leukemia [ICD-11: 2A60.1]
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model HL60 cells Peripheral blood Homo sapiens (Human) CVCL_0002
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Key Molecule: hsa-mir-30d [1]
Molecule Alteration Expression
Down-regulation
Resistant Disease Adult acute myeloid leukemia [ICD-11: 2A60.1]
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model HCT116 cells Colon Homo sapiens (Human) CVCL_0291
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Key Molecule: Endoplasmic reticulum chaperone BiP (HSPA5) [1]
Molecule Alteration Expression
Up-regulation
Resistant Disease Adult acute myeloid leukemia [ICD-11: 2A60.1]
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model HL60 cells Peripheral blood Homo sapiens (Human) CVCL_0002
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Gastric cancer [ICD-11: 2B72]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Key Molecule: hsa-miR-199a-5p [1]
Molecule Alteration Expression
Down-regulation
Resistant Disease Gastric cancer [ICD-11: 2B72.1]
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model BGC-823 cells Gastric Homo sapiens (Human) CVCL_3360
MGC-803 cells Gastric Homo sapiens (Human) CVCL_5334
SGC7901 cells Gastric Homo sapiens (Human) CVCL_0520
GES-1 cells Gastric Homo sapiens (Human) CVCL_EQ22
MkN-45 cells Gastric Homo sapiens (Human) CVCL_0434
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Key Molecule: Endoplasmic reticulum chaperone BiP (HSPA5) [1]
Molecule Alteration Expression
Up-regulation
Resistant Disease Gastric cancer [ICD-11: 2B72.1]
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model BGC-823 cells Gastric Homo sapiens (Human) CVCL_3360
MGC-803 cells Gastric Homo sapiens (Human) CVCL_5334
SGC7901 cells Gastric Homo sapiens (Human) CVCL_0520
GES-1 cells Gastric Homo sapiens (Human) CVCL_EQ22
MkN-45 cells Gastric Homo sapiens (Human) CVCL_0434
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Colon cancer [ICD-11: 2B90]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Key Molecule: hsa-mir-181a [1]
Molecule Alteration Expression
Down-regulation
Resistant Disease Colon carcinoma [ICD-11: 2B90.2]
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model HCT116 cells Colon Homo sapiens (Human) CVCL_0291
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Key Molecule: hsa-miR-199a-5p [1]
Molecule Alteration Expression
Down-regulation
Resistant Disease Colon carcinoma [ICD-11: 2B90.2]
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model HCT116 cells Colon Homo sapiens (Human) CVCL_0291
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Key Molecule: hsa-mir-30d [1]
Molecule Alteration Expression
Down-regulation
Resistant Disease Colon carcinoma [ICD-11: 2B90.2]
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model J82 cells Bladder Homo sapiens (Human) CVCL_0359
UM-UC-3 cells Bladder Homo sapiens (Human) CVCL_1783
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Key Molecule: Endoplasmic reticulum chaperone BiP (HSPA5) [1]
Molecule Alteration Expression
Up-regulation
Resistant Disease Colon carcinoma [ICD-11: 2B90.2]
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model HCT116 cells Colon Homo sapiens (Human) CVCL_0291
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Prostate cancer [ICD-11: 2C82]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Key Molecule: hsa-mir-181a [1]
Molecule Alteration Expression
Down-regulation
Resistant Disease Prostate cancer [ICD-11: 2C82.0]
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model C4-2B cells Prostate Homo sapiens (Human) CVCL_4784
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Key Molecule: hsa-mir-30d [1]
Molecule Alteration Expression
Down-regulation
Resistant Disease Prostate cancer [ICD-11: 2C82.0]
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model HL60 cells Peripheral blood Homo sapiens (Human) CVCL_0002
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Key Molecule: Endoplasmic reticulum chaperone BiP (HSPA5) [1]
Molecule Alteration Expression
Up-regulation
Resistant Disease Prostate cancer [ICD-11: 2C82.0]
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model C4-2B cells Prostate Homo sapiens (Human) CVCL_4784
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Bladder cancer [ICD-11: 2C94]
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Key Molecule: hsa-mir-181a [1]
Molecule Alteration Expression
Down-regulation
Resistant Disease Bladder carcinoma [ICD-11: 2C94.1]
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model J82 cells Bladder Homo sapiens (Human) CVCL_0359
UM-UC-3 cells Bladder Homo sapiens (Human) CVCL_1783
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Key Molecule: hsa-miR-199a-5p [1]
Molecule Alteration Expression
Down-regulation
Resistant Disease Bladder carcinoma [ICD-11: 2C94.1]
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model J82 cells Bladder Homo sapiens (Human) CVCL_0359
UM-UC-3 cells Bladder Homo sapiens (Human) CVCL_1783
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
Key Molecule: hsa-mir-30d [1]
Molecule Alteration Expression
Down-regulation
Resistant Disease Bladder carcinoma [ICD-11: 2C94.1]
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model BGC-823 cells Gastric Homo sapiens (Human) CVCL_3360
MGC-803 cells Gastric Homo sapiens (Human) CVCL_5334
SGC7901 cells Gastric Homo sapiens (Human) CVCL_0520
GES-1 cells Gastric Homo sapiens (Human) CVCL_EQ22
MkN-45 cells Gastric Homo sapiens (Human) CVCL_0434
Experiment for
Molecule Alteration
RT-PCR; qRT-PCR
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Key Molecule: Endoplasmic reticulum chaperone BiP (HSPA5) [1]
Molecule Alteration Expression
Up-regulation
Resistant Disease Bladder carcinoma [ICD-11: 2C94.1]
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model J82 cells Bladder Homo sapiens (Human) CVCL_0359
UM-UC-3 cells Bladder Homo sapiens (Human) CVCL_1783
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance.
References
Ref 1 miR-30d, miR-181a and miR-199a-5p cooperatively suppress the endoplasmic reticulum chaperone and signaling regulator GRP78 in cancer. Oncogene. 2013 Sep 26;32(39):4694-701. doi: 10.1038/onc.2012.483. Epub 2012 Oct 22.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.