Molecule Information
General Information of the Molecule (ID: Mol01566)
Name |
hsa-miR-199a-5p
,Homo sapiens
|
||||
---|---|---|---|---|---|
Synonyms |
microRNA 199a-1
Click to Show/Hide
|
||||
Molecule Type |
Mature miRNA
|
||||
Sequence |
CCCAGUGUUCAGACUACCUGUUC
Click to Show/Hide
|
||||
Ensembl ID | |||||
HGNC ID | |||||
Mature Accession | |||||
Click to Show/Hide the Complete Species Lineage | |||||
Type(s) of Resistant Mechanism of This Molecule
EADR: Epigenetic Alteration of DNA, RNA or Protein
Drug Resistance Data Categorized by Drug
Approved Drug(s)
4 drug(s) in total
Cetuximab
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Colon cancer | [1] | |||
Resistant Disease | Colon cancer [ICD-11: 2B90.1] | |||
Resistant Drug | Cetuximab | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | AKT signaling pathway | Inhibition | hsa04151 | |
Cell migration | Activation | hsa04670 | ||
Cell proliferation | Activation | hsa05200 | ||
In Vitro Model | GEO CR cells | Colon | Homo sapiens (Human) | CVCL_0271 |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
MTS assay | |||
Mechanism Description | The ability of miR-199a-5p and miR-375 to target PHLPP1 (PH domain and leucine-rich repeat protein phosphatase 1), a tumor suppressor that negatively regulates the AkT pathway, accounts, at least in part, for their drug-resistance activity. Indeed, restoration of PHLPP1 increases sensitivity of the GEO cells to CTX and reverts the resistance-promoting effect of miR-199a-5p and miR-375. |
Cisplatin
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Hepatocellular carcinoma | [2] | |||
Resistant Disease | Hepatocellular carcinoma [ICD-11: 2C12.2] | |||
Resistant Drug | Cisplatin | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Identified from the Human Clinical Data | |||
Cell Pathway Regulation | Cell proliferation | Activation | hsa05200 | |
In Vitro Model | Huh-7 cells | Liver | Homo sapiens (Human) | CVCL_0336 |
HepG2 cells | Liver | Homo sapiens (Human) | CVCL_0027 | |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | miR-199a-5p levels were significantly decreased in HCC patients treated with cisplatin-based chemotherapy. Downregulated miR-199a-5p enhanced autophagy activation by targeting ATG7. Cisplatin-induced downregulation of miR-199a-5p increases cell proliferation by activating autophagy. |
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Osteosarcoma | [3] | |||
Sensitive Disease | Osteosarcoma [ICD-11: 2B51.0] | |||
Sensitive Drug | Cisplatin | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
In Vitro Model | MG63 cells | Bone marrow | Homo sapiens (Human) | CVCL_0426 |
Experiment for Molecule Alteration |
RT-qPCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | miR199a-5p directly targeted Beclin1 and negatively mediated Beclin1 expression at a post-transcriptional level, microRNA-199a-5p inhibits cisplatin-induced drug resistance via inhibition of autophagy in osteosarcoma cells. |
Imatinib
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Chronic myeloid leukemia | [4] | |||
Sensitive Disease | Chronic myeloid leukemia [ICD-11: 2A20.0] | |||
Sensitive Drug | Imatinib | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell viability | Inhibition | hsa05200 | ||
Wnt2-mediated Beta-catenin signaling pathway | Inhibition | hsa04310 | ||
In Vitro Model | K562 cells | Blood | Homo sapiens (Human) | CVCL_0004 |
Ku812 cells | Bone marrow | Homo sapiens (Human) | CVCL_0379 | |
Experiment for Molecule Alteration |
RT-qPCR | |||
Experiment for Drug Resistance |
MTT assay; Flow cytometry assay | |||
Mechanism Description | microRNA-199a/b-5p enhance imatinib efficacy via repressing WNT2 signaling-mediated protective autophagy in imatinib-resistant chronic myeloid leukemia cells. |
Vincristine
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Colorectal cancer | [5] | |||
Sensitive Disease | Colorectal cancer [ICD-11: 2B91.1] | |||
Sensitive Drug | Vincristine | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Identified from the Human Clinical Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell migration | Inhibition | hsa04670 | ||
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | HCT-8 cells | Colon | Homo sapiens (Human) | CVCL_2478 |
In Vivo Model | BALB/c nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
RT-PCR; Northern blotting analysis | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | miR-199a-5p over-expression is able to inhibit CRC cell proliferation and reverse tumor cell drug resistance in vitro and in vivo, partly through suppressing the expression of CAC1 protein at the post-transcriptional level in CRC. |
Clinical Trial Drug(s)
1 drug(s) in total
Trichostatin A
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Bladder carcinoma | [6] | |||
Resistant Disease | Bladder carcinoma [ICD-11: 2C94.1] | |||
Resistant Drug | Trichostatin A | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Inhibition | hsa04210 | |
In Vitro Model | J82 cells | Bladder | Homo sapiens (Human) | CVCL_0359 |
UM-UC-3 cells | Bladder | Homo sapiens (Human) | CVCL_1783 | |
Experiment for Molecule Alteration |
RT-PCR; qRT-PCR | |||
Experiment for Drug Resistance |
Flow cytometry assay | |||
Mechanism Description | GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance. | |||
Disease Class: Adult acute myeloid leukemia | [6] | |||
Resistant Disease | Adult acute myeloid leukemia [ICD-11: 2A60.1] | |||
Resistant Drug | Trichostatin A | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Inhibition | hsa04210 | |
In Vitro Model | HL60 cells | Peripheral blood | Homo sapiens (Human) | CVCL_0002 |
Experiment for Molecule Alteration |
RT-PCR; qRT-PCR | |||
Experiment for Drug Resistance |
Flow cytometry assay | |||
Mechanism Description | GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance. | |||
Disease Class: Colon carcinoma | [6] | |||
Resistant Disease | Colon carcinoma [ICD-11: 2B90.2] | |||
Resistant Drug | Trichostatin A | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Inhibition | hsa04210 | |
In Vitro Model | HCT116 cells | Colon | Homo sapiens (Human) | CVCL_0291 |
Experiment for Molecule Alteration |
RT-PCR; qRT-PCR | |||
Experiment for Drug Resistance |
Flow cytometry assay | |||
Mechanism Description | GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance. | |||
Disease Class: Gastric cancer | [6] | |||
Resistant Disease | Gastric cancer [ICD-11: 2B72.1] | |||
Resistant Drug | Trichostatin A | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Inhibition | hsa04210 | |
In Vitro Model | BGC-823 cells | Gastric | Homo sapiens (Human) | CVCL_3360 |
MGC-803 cells | Gastric | Homo sapiens (Human) | CVCL_5334 | |
SGC7901 cells | Gastric | Homo sapiens (Human) | CVCL_0520 | |
GES-1 cells | Gastric | Homo sapiens (Human) | CVCL_EQ22 | |
MkN-45 cells | Gastric | Homo sapiens (Human) | CVCL_0434 | |
Experiment for Molecule Alteration |
RT-PCR; qRT-PCR | |||
Experiment for Drug Resistance |
Flow cytometry assay | |||
Mechanism Description | GRP78 up-regulation is a major contributor to tumorigenesis and therapeutic resistance, miR-30d, miR-181a and miR-199a-5p regulate GRP78 and that their decreased expression in tumor cells results in increased GRP78 levels, which in turn promotes tumorigenesis and therapeutic resistance. |
References
If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.