General Information of the Molecule (ID: Mol01998)
Name
Enoyl-[acyl-carrier-protein] reductase [NADH] (INHA) ,Mycobacterium tuberculosis
Synonyms
inhA; Rv1484; MTCY277.05
    Click to Show/Hide
Molecule Type
Protein
Gene Name
INHA
Gene ID
886523
Sequence
MTGLLDGKRILVSGIITDSSIAFHIARVAQEQGAQLVLTGFDRLRLIQRITDRLPAKAPL
LELDVQNEEHLASLAGRVTEAIGAGNKLDGVVHSIGFMPQTGMGINPFFDAPYADVSKGI
HISAYSYASMAKALLPIMNPGGSIVGMDFDPSRAMPAYNWMTVAKSALESVNRFVAREAG
KYGVRSNLVAAGPIRTLAMSAIVGGALGEEAGAQIQLLEEGWDQRAPIGWNMKDATPVAK
TVCALLSDWLPATTGDIIYADGGAHTQLL
    Click to Show/Hide
Function
Enoyl-ACP reductase of the type II fatty acid syntase (FAS-II) system, which is involved in the biosynthesis of mycolic acids, a major component of mycobacterial cell walls. Catalyzes the NADH-dependent reduction of the double bond of 2-trans-enoyl-[acyl-carrier protein], an essential step in the fatty acid elongation cycle of the FAS-II pathway. Shows preference for long-chain fatty acyl thioester substrates (>C16), and can also use 2-trans-enoyl-CoAs as alternative substrates. The mycobacterial FAS-II system utilizes the products of the FAS-I system as primers to extend fatty acyl chain lengths up to C56, forming the meromycolate chain that serves as the precursor for final mycolic acids.
    Click to Show/Hide
Uniprot ID
INHA_MYCTU
        Click to Show/Hide the Complete Species Lineage
Kingdom: N.A.
Phylum: Actinobacteria
Class: Actinomycetia
Order: 85007
Family: Mycobacteriaceae
Genus: Mycobacterium
Species: Mycobacterium tuberculosis
Type(s) of Resistant Mechanism of This Molecule
  ADTT: Aberration of the Drug's Therapeutic Target
  DISM: Drug Inactivation by Structure Modification
Drug Resistance Data Categorized by Drug
Approved Drug(s)
3 drug(s) in total
Click to Show/Hide the Full List of Drugs
Isoniazid
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Aberration of the Drug's Therapeutic Target (ADTT) Click to Show/Hide
Disease Class: Mycolicibacterium smegmatis infection [1]
Resistant Disease Mycolicibacterium smegmatis infection [ICD-11: 1B2Z.6]
Resistant Drug Isoniazid
Molecule Alteration Missense mutation
p.G141E
Experimental Note Discovered Using In-vivo Testing Model
In Vitro Model Mycobacterium tuberculosis strain H37Rv ATCC27294 T 83332
Experiment for
Molecule Alteration
Sequencing analysis
Experiment for
Drug Resistance
In vitro drug susceptibility testing
Mechanism Description Notably, isoniazid is activated by the enzyme catalase-peroxidase, KatG, encoded by katG, whereas prothionamide is activated by the flavin monoxygenase, EthA, encoded by ethA. Mutations in katG and ethA are associated with individual isoniazid and prothionamide/ethionamide resistance, respectively. The ndh gene coding for NADH dehydrogenase, Ndh, was first identified as a new mechanism for INHR in Mycobacterium smegmatis. The mutations in ndh gene cause defects in the oxidation of NADH to NAD, which results in NADH accumulation and NAD depletion. The increased level of NADH inhibits the binding of isoniazid-NAD adduct to the active site of the InhA enzyme, which disturbs the regulation of enzyme activity and may cause co-resistance to isoniazid and prothionamide. EthR, a member of the TetR/CamR family, is a repressor of ethA. EthR regulates the transcription of ethA by coordinated octamerization on a 55-bp operator situated in the ethA-R intergenic region. Impeding EthR function leads to enhanced mycobacterial sensitivity to prothionamide, whereas mutations in ethR encoding a negative transcriptional regulator of the expression of EthA lead to prothionamide resistance. Finally, MshA, a member of the glycosyltransferase family, is a key enzyme involved in mycothiol biosynthesis in M. tuberculosis. Mutations in mshA coding MshA have been proposed to create a disturbance in prothionamide/ethionamide activation.
Disease Class: Mycolicibacterium smegmatis infection [1]
Resistant Disease Mycolicibacterium smegmatis infection [ICD-11: 1B2Z.6]
Resistant Drug Isoniazid
Molecule Alteration Missense mutation
p.S94A
Experimental Note Discovered Using In-vivo Testing Model
In Vitro Model Mycobacterium tuberculosis strain H37Rv ATCC27294 T 83332
Experiment for
Molecule Alteration
Sequencing analysis
Experiment for
Drug Resistance
In vitro drug susceptibility testing
Mechanism Description Notably, isoniazid is activated by the enzyme catalase-peroxidase, KatG, encoded by katG, whereas prothionamide is activated by the flavin monoxygenase, EthA, encoded by ethA. Mutations in katG and ethA are associated with individual isoniazid and prothionamide/ethionamide resistance, respectively. The ndh gene coding for NADH dehydrogenase, Ndh, was first identified as a new mechanism for INHR in Mycobacterium smegmatis. The mutations in ndh gene cause defects in the oxidation of NADH to NAD, which results in NADH accumulation and NAD depletion. The increased level of NADH inhibits the binding of isoniazid-NAD adduct to the active site of the InhA enzyme, which disturbs the regulation of enzyme activity and may cause co-resistance to isoniazid and prothionamide. EthR, a member of the TetR/CamR family, is a repressor of ethA. EthR regulates the transcription of ethA by coordinated octamerization on a 55-bp operator situated in the ethA-R intergenic region. Impeding EthR function leads to enhanced mycobacterial sensitivity to prothionamide, whereas mutations in ethR encoding a negative transcriptional regulator of the expression of EthA lead to prothionamide resistance. Finally, MshA, a member of the glycosyltransferase family, is a key enzyme involved in mycothiol biosynthesis in M. tuberculosis. Mutations in mshA coding MshA have been proposed to create a disturbance in prothionamide/ethionamide activation.
Disease Class: Mycolicibacterium smegmatis infection [1]
Resistant Disease Mycolicibacterium smegmatis infection [ICD-11: 1B2Z.6]
Resistant Drug Isoniazid
Molecule Alteration Missense mutation
p.I194T
Experimental Note Discovered Using In-vivo Testing Model
In Vitro Model Mycobacterium tuberculosis strain H37Rv ATCC27294 T 83332
Experiment for
Molecule Alteration
Sequencing analysis
Experiment for
Drug Resistance
In vitro drug susceptibility testing
Mechanism Description Notably, isoniazid is activated by the enzyme catalase-peroxidase, KatG, encoded by katG, whereas prothionamide is activated by the flavin monoxygenase, EthA, encoded by ethA. Mutations in katG and ethA are associated with individual isoniazid and prothionamide/ethionamide resistance, respectively. The ndh gene coding for NADH dehydrogenase, Ndh, was first identified as a new mechanism for INHR in Mycobacterium smegmatis. The mutations in ndh gene cause defects in the oxidation of NADH to NAD, which results in NADH accumulation and NAD depletion. The increased level of NADH inhibits the binding of isoniazid-NAD adduct to the active site of the InhA enzyme, which disturbs the regulation of enzyme activity and may cause co-resistance to isoniazid and prothionamide. EthR, a member of the TetR/CamR family, is a repressor of ethA. EthR regulates the transcription of ethA by coordinated octamerization on a 55-bp operator situated in the ethA-R intergenic region. Impeding EthR function leads to enhanced mycobacterial sensitivity to prothionamide, whereas mutations in ethR encoding a negative transcriptional regulator of the expression of EthA lead to prothionamide resistance. Finally, MshA, a member of the glycosyltransferase family, is a key enzyme involved in mycothiol biosynthesis in M. tuberculosis. Mutations in mshA coding MshA have been proposed to create a disturbance in prothionamide/ethionamide activation.
Disease Class: Tuberculosis [2]
Resistant Disease Tuberculosis [ICD-11: 1B10.0]
Resistant Drug Isoniazid
Molecule Alteration Mutation
.
Experimental Note Identified from the Human Clinical Data
In Vitro Model Mycobacterium tuberculosis H37Rv 83332
Mycobacterium tuberculosis isolates 1773
Experiment for
Molecule Alteration
qRT-PCR
Mechanism Description Monoresistance to rifampicin and isoniazid was found in 11% (95% CI: 0.077-0.150; p, 0.087) and 8.5% (95% CI: 0.056-0.123; p, 0.692) of all the patients, respectively. Resistance to RIF and INH among newly diagnosed patients was 10.2% and 8.6%, while among previously treated patients, resistance to RIF and INH was 23.5% and 5.9% respectively. Furthermore, 4.9% of the samples from newly diagnosed with INH monoresistance, were found to have mutations in the InhA region while 8.6% had mutations in the katG region, a condition that can lead to phenotypic isoniazid drug resistance.
Prothionamide
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Aberration of the Drug's Therapeutic Target (ADTT) Click to Show/Hide
Disease Class: Mycolicibacterium smegmatis infection [1]
Resistant Disease Mycolicibacterium smegmatis infection [ICD-11: 1B2Z.6]
Resistant Drug Prothionamide
Molecule Alteration Missense mutation
p.G141E
Experimental Note Discovered Using In-vivo Testing Model
In Vitro Model Mycobacterium tuberculosis strain H37Rv ATCC27294 T 83332
Experiment for
Molecule Alteration
Sequencing analysis
Experiment for
Drug Resistance
In vitro drug susceptibility testing
Mechanism Description Notably, isoniazid is activated by the enzyme catalase-peroxidase, KatG, encoded by katG, whereas prothionamide is activated by the flavin monoxygenase, EthA, encoded by ethA. Mutations in katG and ethA are associated with individual isoniazid and prothionamide/ethionamide resistance, respectively. The ndh gene coding for NADH dehydrogenase, Ndh, was first identified as a new mechanism for INHR in Mycobacterium smegmatis. The mutations in ndh gene cause defects in the oxidation of NADH to NAD, which results in NADH accumulation and NAD depletion. The increased level of NADH inhibits the binding of isoniazid-NAD adduct to the active site of the InhA enzyme, which disturbs the regulation of enzyme activity and may cause co-resistance to isoniazid and prothionamide. EthR, a member of the TetR/CamR family, is a repressor of ethA. EthR regulates the transcription of ethA by coordinated octamerization on a 55-bp operator situated in the ethA-R intergenic region. Impeding EthR function leads to enhanced mycobacterial sensitivity to prothionamide, whereas mutations in ethR encoding a negative transcriptional regulator of the expression of EthA lead to prothionamide resistance. Finally, MshA, a member of the glycosyltransferase family, is a key enzyme involved in mycothiol biosynthesis in M. tuberculosis. Mutations in mshA coding MshA have been proposed to create a disturbance in prothionamide/ethionamide activation.
Disease Class: Mycolicibacterium smegmatis infection [1]
Resistant Disease Mycolicibacterium smegmatis infection [ICD-11: 1B2Z.6]
Resistant Drug Prothionamide
Molecule Alteration Missense mutation
p.S94A
Experimental Note Discovered Using In-vivo Testing Model
In Vitro Model Mycobacterium tuberculosis strain H37Rv ATCC27294 T 83332
Experiment for
Molecule Alteration
Sequencing analysis
Experiment for
Drug Resistance
In vitro drug susceptibility testing
Mechanism Description Notably, isoniazid is activated by the enzyme catalase-peroxidase, KatG, encoded by katG, whereas prothionamide is activated by the flavin monoxygenase, EthA, encoded by ethA. Mutations in katG and ethA are associated with individual isoniazid and prothionamide/ethionamide resistance, respectively. The ndh gene coding for NADH dehydrogenase, Ndh, was first identified as a new mechanism for INHR in Mycobacterium smegmatis. The mutations in ndh gene cause defects in the oxidation of NADH to NAD, which results in NADH accumulation and NAD depletion. The increased level of NADH inhibits the binding of isoniazid-NAD adduct to the active site of the InhA enzyme, which disturbs the regulation of enzyme activity and may cause co-resistance to isoniazid and prothionamide. EthR, a member of the TetR/CamR family, is a repressor of ethA. EthR regulates the transcription of ethA by coordinated octamerization on a 55-bp operator situated in the ethA-R intergenic region. Impeding EthR function leads to enhanced mycobacterial sensitivity to prothionamide, whereas mutations in ethR encoding a negative transcriptional regulator of the expression of EthA lead to prothionamide resistance. Finally, MshA, a member of the glycosyltransferase family, is a key enzyme involved in mycothiol biosynthesis in M. tuberculosis. Mutations in mshA coding MshA have been proposed to create a disturbance in prothionamide/ethionamide activation.
Disease Class: Mycolicibacterium smegmatis infection [1]
Resistant Disease Mycolicibacterium smegmatis infection [ICD-11: 1B2Z.6]
Resistant Drug Prothionamide
Molecule Alteration Missense mutation
p.I194T
Experimental Note Discovered Using In-vivo Testing Model
In Vitro Model Mycobacterium tuberculosis strain H37Rv ATCC27294 T 83332
Experiment for
Molecule Alteration
Sequencing analysis
Experiment for
Drug Resistance
In vitro drug susceptibility testing
Mechanism Description Notably, isoniazid is activated by the enzyme catalase-peroxidase, KatG, encoded by katG, whereas prothionamide is activated by the flavin monoxygenase, EthA, encoded by ethA. Mutations in katG and ethA are associated with individual isoniazid and prothionamide/ethionamide resistance, respectively. The ndh gene coding for NADH dehydrogenase, Ndh, was first identified as a new mechanism for INHR in Mycobacterium smegmatis. The mutations in ndh gene cause defects in the oxidation of NADH to NAD, which results in NADH accumulation and NAD depletion. The increased level of NADH inhibits the binding of isoniazid-NAD adduct to the active site of the InhA enzyme, which disturbs the regulation of enzyme activity and may cause co-resistance to isoniazid and prothionamide. EthR, a member of the TetR/CamR family, is a repressor of ethA. EthR regulates the transcription of ethA by coordinated octamerization on a 55-bp operator situated in the ethA-R intergenic region. Impeding EthR function leads to enhanced mycobacterial sensitivity to prothionamide, whereas mutations in ethR encoding a negative transcriptional regulator of the expression of EthA lead to prothionamide resistance. Finally, MshA, a member of the glycosyltransferase family, is a key enzyme involved in mycothiol biosynthesis in M. tuberculosis. Mutations in mshA coding MshA have been proposed to create a disturbance in prothionamide/ethionamide activation.
Rifampin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Drug Inactivation by Structure Modification (DISM) Click to Show/Hide
Disease Class: Tuberculosis [2]
Resistant Disease Tuberculosis [ICD-11: 1B10.0]
Resistant Drug Rifampin
Molecule Alteration Mutation
.
Experimental Note Identified from the Human Clinical Data
In Vitro Model Mycobacterium tuberculosis H37Rv 83332
Mycobacterium tuberculosis isolates 1773
Experiment for
Molecule Alteration
qRT-PCR
Mechanism Description Monoresistance to rifampicin and isoniazid was found in 11% (95% CI: 0.077-0.150; p, 0.087) and 8.5% (95% CI: 0.056-0.123; p, 0.692) of all the patients, respectively. Resistance to RIF and INH among newly diagnosed patients was 10.2% and 8.6%, while among previously treated patients, resistance to RIF and INH was 23.5% and 5.9% respectively. Furthermore, 4.9% of the samples from newly diagnosed with INH monoresistance, were found to have mutations in the InhA region while 8.6% had mutations in the katG region, a condition that can lead to phenotypic isoniazid drug resistance.
References
Ref 1 Detection of novel mutations associated with independent resistance and cross-resistance to isoniazid and prothionamide in Mycobacterium tuberculosis clinical isolates .Clin Microbiol Infect. 2019 Aug;25(8):1041.e1-1041.e7. doi: 10.1016/j.cmi.2018.12.008. Epub 2018 Dec 22. 10.1016/j.cmi.2018.12.008
Ref 2 Rifampicin and isoniazid drug resistance among patients diagnosed with pulmonary tuberculosis in southwestern Uganda .PLoS One. 2021 Oct 29;16(10):e0259221. doi: 10.1371/journal.pone.0259221. eCollection 2021. 10.1371/journal.pone.0259221

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.