General Information of the Molecule (ID: Mol00554)
Name
Programmed cell death protein 4 (PDCD4) ,Homo sapiens
Synonyms
Neoplastic transformation inhibitor protein; Nuclear antigen H731-like; Protein 197/15a; H731
    Click to Show/Hide
Molecule Type
Protein
Gene Name
PDCD4
Gene ID
27250
Location
chr10:110871795-110900006[+]
Sequence
MDVENEQILNVNPADPDNLSDSLFSGDEENAGTEEIKNEINGNWISASSINEARINAKAK
RRLRKNSSRDSGRGDSVSDSGSDALRSGLTVPTSPKGRLLDRRSRSGKGRGLPKKGGAGG
KGVWGTPGQVYDVEEVDVKDPNYDDDQENCVYETVVLPLDERAFEKTLTPIIQEYFEHGD
TNEVAEMLRDLNLGEMKSGVPVLAVSLALEGKASHREMTSKLLSDLCGTVMSTTDVEKSF
DKLLKDLPELALDTPRAPQLVGQFIARAVGDGILCNTYIDSYKGTVDCVQARAALDKATV
LLSMSKGGKRKDSVWGSGGGQQSVNHLVKEIDMLLKEYLLSGDISEAEHCLKELEVPHFH
HELVYEAIIMVLESTGESTFKMILDLLKSLWKSSTITVDQMKRGYERIYNEIPDINLDVP
HSYSVLERFVEECFQAGIISKQLRDLCPSRGRKRFVSEGDGGRLKPESY
    Click to Show/Hide
Function
Inhibits translation initiation and cap-dependent translation. May excert its function by hindering the interaction between EIF4A1 and EIF4G. Inhibits the helicase activity of EIF4A. Modulates the activation of JUN kinase. Down-regulates the expression of MAP4K1, thus inhibiting events important in driving invasion, namely, MAPK85 activation and consequent JUN-dependent transcription. May play a role in apoptosis. Tumor suppressor. Inhibits tumor promoter-induced neoplastic transformation. Binds RNA (By similarity).
    Click to Show/Hide
Uniprot ID
PDCD4_HUMAN
Ensembl ID
ENSG00000150593
HGNC ID
HGNC:8763
        Click to Show/Hide the Complete Species Lineage
Kingdom: Metazoa
Phylum: Chordata
Class: Mammalia
Order: Primates
Family: Hominidae
Genus: Homo
Species: Homo sapiens
Type(s) of Resistant Mechanism of This Molecule
  EADR: Epigenetic Alteration of DNA, RNA or Protein
  UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Drug
Approved Drug(s)
18 drug(s) in total
Click to Show/Hide the Full List of Drugs
Arsenic trioxide
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Leukemia [1]
Resistant Disease Leukemia [ICD-11: 2B33.6]
Resistant Drug Arsenic trioxide
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model HL60 cells Peripheral blood Homo sapiens (Human) CVCL_0002
K562 cells Blood Homo sapiens (Human) CVCL_0004
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description PDCD4 has been reported to be involved in growth, apoptosis, invasion and cell cycle etc. AMO-miR-21 significantly sensitizes HL60 and k562 cells to ATO by inducing apoptosis, and these effects of AMO-miR-21 may be partially due to its up-regulation of PDCD4.
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Chronic myelogenous leukemia [2]
Sensitive Disease Chronic myelogenous leukemia [ICD-11: 2A20.3]
Sensitive Drug Arsenic trioxide
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell growth Inhibition hsa05200
In Vitro Model K562 cells Blood Homo sapiens (Human) CVCL_0004
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description miR-21 post-transcriptionally down-regulates tumor suppressor PDCD4. AMO-miR-21 sensitized leukemic k562 cells to ATO by inducing apoptosis partially due to its up-regulation of PDCD4 protein level.
Cisplatin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Nasopharyngeal carcinoma [3]
Resistant Disease Nasopharyngeal carcinoma [ICD-11: 2B6B.0]
Resistant Drug Cisplatin
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
Cell proliferation Activation hsa05200
In Vitro Model HNE1 cells Nasopharynx Homo sapiens (Human) CVCL_0308
Experiment for
Molecule Alteration
Western blot analysis; RT-qPCR
Experiment for
Drug Resistance
MTT assay; Flow cytometry assay
Mechanism Description Long non-coding RNA XIST modulates cisplatin resistance by altering PDCD4 and Fas-Lexpressions in human nasopharyngeal carcinoma HNE1 cells in vitro. XIST is up-regulated in HNE1/DDP cells, and down-regulation and up-regulation of XIST expression reduce and increase DDP resistance of the cells, respectively, possibly as a result of changes in the expressions of PDCD4 and Fas-L.
Disease Class: Non-small cell lung cancer [4], [5]
Resistant Disease Non-small cell lung cancer [ICD-11: 2C25.Y]
Resistant Drug Cisplatin
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell proliferation Activation hsa05200
In Vitro Model A549 cells Lung Homo sapiens (Human) CVCL_0023
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
MTT assay and TUNEL assay
Mechanism Description The expression level of miR-182 in A549 cell line was significantly higher than that in NHBE cell line. Transfection of miR-182 inhibitor induced sensitivity of A549 cells to cisplatin. A549 cells transfected with PDCD4 siRNA became more resistant to cisplatin therapy. We found an increase PDCD4 protein level following the transfection of miR-182 inhibitor using Western blot analysis. In addition, the (+) growth-inhibitory effect by miR-182 inhibitor was weakened after the addition of PDCD4 siRNA. And miR-141 expression was significantly up-regulated in cisplatin-resistant A549/DDP cells compared with the parental cell line A549; and PDCD4, an important apoptosis regulator, was found to be down-regulated. Luciferase activity assay and Western blot analysis confirmed that PDCD4 is a direct target of miR-141. Inhibition of miR-141 in A549/DDP cells markedly increased cisplatin sensitivity and apoptosis, which was partially abrogated by PDCD4 inhibition, indicating that PDCD4 is a functional target of miR-141 in of the regulation of cisplatin sensitivity.
Disease Class: Ovarian cancer [6]
Resistant Disease Ovarian cancer [ICD-11: 2C73.0]
Resistant Drug Cisplatin
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell invasion Activation hsa05200
Cell migration Activation hsa04670
Cell proliferation Activation hsa05200
JNk1/c-Jun pathway Activation hsa04010
In Vitro Model Hey A8 cells Ovary Homo sapiens (Human) CVCL_8878
SkVO3ip1 cells Ovary Homo sapiens (Human) CVCL_0C84
A2780CP20 cells Ovary Homo sapiens (Human) CVCL_A5PS
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
Alamar blue dye assay
Mechanism Description Blocking the JNk-1, the major activator of c-Jun phosphorylation, reduced the expression of pre-mir-21 and increased the expression of its well-known target gene, PDCD4. Overexpression of miR-21 in cisplatin sensitive cells decreased PDCD4 levels and increased cell proliferation. Finally, targeting miR-21 reduced cell growth, proliferation and invasion of cisplatin resistant ovarian cancer cells. These results suggest that the JNk-1/c-Jun/miR-21 pathway contributes to the cisplatin resistance of ovarian cancer cells and demonstrated that miR-21 is a plausible target to overcome cisplatin resistance.
Disease Class: Ovarian cancer [7], [8]
Resistant Disease Ovarian cancer [ICD-11: 2C73.0]
Resistant Drug Cisplatin
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model SkOV3 cells Ovary Homo sapiens (Human) CVCL_0532
A2780 cells Ovary Homo sapiens (Human) CVCL_0134
OVCAR3 cells Ovary Homo sapiens (Human) CVCL_0465
A2780-CP cells Ovary Homo sapiens (Human) CVCL_H745
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
MTT assay; Flow cytometry assay
Mechanism Description The inhibition of miR-21 enhanced the sensitivity of ovarian cancer cells to cisplatin, miR-21 knockdown enhanced the expression of tumor suppressor PDCD4, downregulation of PDCD4 results in drug resistance via enhanced expression of c-IAP2 and MDR1. And the enhancement of miR-106a expression contributes to the generation of CDDP-resistant ovarian cancer cells, partly by targeting PDCD4. PDCD4 promoted CDDP-induced apoptosis mainly through the death receptor-mediated pathway.
Disease Class: Tongue squamous cell carcinoma [9]
Resistant Disease Tongue squamous cell carcinoma [ICD-11: 2B62.1]
Resistant Drug Cisplatin
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model Tca8113 cells Tongue Homo sapiens (Human) CVCL_6851
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description Programmed cell death 4 (PDCD4) is a tumor suppressor gene and loss of PDCD4 expression was found in multiple human cancers. PDCD4 is an important functional target of miR-21 and related to tumor invasion and transformation. miR-21 could modulate chemosensitivity of TSCC cells to cisplatin by targeting PDCD4.
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Cervical cancer [10]
Sensitive Disease Cervical cancer [ICD-11: 2C77.0]
Sensitive Drug Cisplatin
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell migration Activation hsa04670
Cell proliferation Activation hsa05200
STAT3 signaling pathway Activation hsa04550
In Vitro Model Hela cells Cervix uteri Homo sapiens (Human) CVCL_0030
Siha cells Cervix uteri Homo sapiens (Human) CVCL_0032
Experiment for
Molecule Alteration
Western blot analysis; RT-qPCR
Experiment for
Drug Resistance
MTT assay; Flow cytometry assay; Colony formation assay
Mechanism Description Down-regulation of LncRNA GAS5 can suppress TIMP3 and PDCD4 expression by enhancing miR-21 expression to suppress apoptosis and promote migration, invasion and cisplatin resistance in cervical cancer through the STAT3 signaling pathway.
Disease Class: Bladder cancer [11]
Sensitive Disease Bladder cancer [ICD-11: 2C94.0]
Sensitive Drug Cisplatin
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell proliferation Inhibition hsa05200
In Vitro Model 5637 cells Bladder Homo sapiens (Human) CVCL_0126
T24 cells Bladder Homo sapiens (Human) CVCL_0554
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
MTS assay
Mechanism Description miR-150 functions as a tumor promoter in reducing chemosensitivity and promoting invasiveness of MIBC cells via downretulating PDCD4.
Cytarabine
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Acute myeloid leukemia [12]
Sensitive Disease Acute myeloid leukemia [ICD-11: 2A60.0]
Sensitive Drug Cytarabine
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
In Vitro Model HL60 cells Peripheral blood Homo sapiens (Human) CVCL_0002
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description AMO-miR-21 significantly sensitizes HL60 cells to Ara-C byinducing apoptosis and these effects of AMO-miR-21 may be partially due to its up-regulation ofPDCD4.
Docetaxel
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Prostate cancer [13]
Resistant Disease Prostate cancer [ICD-11: 2C82.0]
Resistant Drug Docetaxel
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell proliferation Activation hsa05200
In Vitro Model PC3 cells Prostate Homo sapiens (Human) CVCL_0035
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description Programmed cell death 4 (PDCD4), is a novel suppressor of tumorigenesis, tumor progression and invasion. miR-21 can directly down-regulate the expression of PDCD4 by targeting its 3'UTR in PC3 cells. PDCD4, a direct target gene of miR-21, could mediate chemoresistance to docetaxel in PC3 cells.
Dovitinib lactate
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Renal carcinoma [14]
Sensitive Disease Renal carcinoma [ICD-11: 2C90.2]
Sensitive Drug Dovitinib lactate
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation PI3K/AKT signaling pathway Inhibition hsa04151
In Vitro Model 786-O cells Kidney Homo sapiens (Human) CVCL_1051
ACHN cells Pleural effusion Homo sapiens (Human) CVCL_1067
HK-2 cells Kidney Homo sapiens (Human) CVCL_0302
RCC10 cells Kidney Homo sapiens (Human) CVCL_6265
RCC4 cells Kidney Homo sapiens (Human) CVCL_0498
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
Celltiter96 Aqueous Non Radioactive Cell Proliferation Assay
Mechanism Description Tumor suppressor genes like PTEN, PDCD4 and TIMP3, are target genes of miR21. PTEN is a potent inhibitor of PI3k/Akt pathway, as well as a direct target of miR21.
Doxorubicin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Colon cancer [15]
Resistant Disease Colon cancer [ICD-11: 2B90.1]
Resistant Drug Doxorubicin
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
Cell proliferation Activation hsa05200
In Vitro Model HCT116 cells Colon Homo sapiens (Human) CVCL_0291
A375 cells Skin Homo sapiens (Human) CVCL_0132
U251 cells Brain Homo sapiens (Human) CVCL_0021
HEK293T cells Kidney Homo sapiens (Human) CVCL_0063
PARP cells Skin Homo sapiens (Human) N.A.
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description Hypoxia induces miR-424 expression and that miR-424 in turn suppresses the level of PDCD4 protein, a tumor suppressor that is involved in apoptosis, by targeting its 3' untranslated region. Functionally, miR-424 overexpression decreases the sensitivity of cancer cells (HCT116 and A375) to doxorubicin (Dox) and etoposide. In contrast, the inhibition of miR-424 (+) apoptosis and increased the sensitivity of cancer cells to Dox. In a xenograft tumor model, miR-424 overexpression promoted tumor growth following Dox treatment, suggesting that miR-424 promotes tumor cell resistance to Dox. Furthermore, miR-424 levels are inversely correlated with PDCD4 expression in clinical breast cancer samples.
Disease Class: Melanoma [15]
Resistant Disease Melanoma [ICD-11: 2C30.0]
Resistant Drug Doxorubicin
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
Cell proliferation Activation hsa05200
In Vitro Model HCT116 cells Colon Homo sapiens (Human) CVCL_0291
A375 cells Skin Homo sapiens (Human) CVCL_0132
U251 cells Brain Homo sapiens (Human) CVCL_0021
HEK293T cells Kidney Homo sapiens (Human) CVCL_0063
PARP cells Skin Homo sapiens (Human) N.A.
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description Hypoxia induces miR-424 expression and that miR-424 in turn suppresses the level of PDCD4 protein, a tumor suppressor that is involved in apoptosis, by targeting its 3' untranslated region. Functionally, miR-424 overexpression decreases the sensitivity of cancer cells (HCT116 and A375) to doxorubicin (Dox) and etoposide. In contrast, the inhibition of miR-424 (+) apoptosis and increased the sensitivity of cancer cells to Dox. In a xenograft tumor model, miR-424 overexpression promoted tumor growth following Dox treatment, suggesting that miR-424 promotes tumor cell resistance to Dox. Furthermore, miR-424 levels are inversely correlated with PDCD4 expression in clinical breast cancer samples.
Etoposide
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Colon cancer [15]
Resistant Disease Colon cancer [ICD-11: 2B90.1]
Resistant Drug Etoposide
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
Cell proliferation Activation hsa05200
In Vitro Model HCT116 cells Colon Homo sapiens (Human) CVCL_0291
A375 cells Skin Homo sapiens (Human) CVCL_0132
U251 cells Brain Homo sapiens (Human) CVCL_0021
HEK293T cells Kidney Homo sapiens (Human) CVCL_0063
PARP cells Skin Homo sapiens (Human) N.A.
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description Hypoxia induces miR-424 expression and that miR-424 in turn suppresses the level of PDCD4 protein, a tumor suppressor that is involved in apoptosis, by targeting its 3' untranslated region. Functionally, miR-424 overexpression decreases the sensitivity of cancer cells (HCT116 and A375) to doxorubicin (Dox) and etoposide. In contrast, the inhibition of miR-424 (+) apoptosis and increased the sensitivity of cancer cells to Dox. In a xenograft tumor model, miR-424 overexpression promoted tumor growth following Dox treatment, suggesting that miR-424 promotes tumor cell resistance to Dox. Furthermore, miR-424 levels are inversely correlated with PDCD4 expression in clinical breast cancer samples.
Disease Class: Melanoma [15]
Resistant Disease Melanoma [ICD-11: 2C30.0]
Resistant Drug Etoposide
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
Cell proliferation Activation hsa05200
In Vitro Model HCT116 cells Colon Homo sapiens (Human) CVCL_0291
A375 cells Skin Homo sapiens (Human) CVCL_0132
U251 cells Brain Homo sapiens (Human) CVCL_0021
HEK293T cells Kidney Homo sapiens (Human) CVCL_0063
PARP cells Skin Homo sapiens (Human) N.A.
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description Hypoxia induces miR-424 expression and that miR-424 in turn suppresses the level of PDCD4 protein, a tumor suppressor that is involved in apoptosis, by targeting its 3' untranslated region. Functionally, miR-424 overexpression decreases the sensitivity of cancer cells (HCT116 and A375) to doxorubicin (Dox) and etoposide. In contrast, the inhibition of miR-424 (+) apoptosis and increased the sensitivity of cancer cells to Dox. In a xenograft tumor model, miR-424 overexpression promoted tumor growth following Dox treatment, suggesting that miR-424 promotes tumor cell resistance to Dox. Furthermore, miR-424 levels are inversely correlated with PDCD4 expression in clinical breast cancer samples.
Fluorouracil
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Pancreatic cancer [16], [17]
Resistant Disease Pancreatic cancer [ICD-11: 2C10.3]
Resistant Drug Fluorouracil
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
Cell invasion Activation hsa05200
Cell migration Activation hsa04670
Cell proliferation Activation hsa05200
PI3K/AKT/mTOR signaling pathway Regulation hsa04151
In Vitro Model PANC-1 cells Pancreas Homo sapiens (Human) CVCL_0480
PATU8988 cells Pancreas Homo sapiens (Human) CVCL_1846
293TN cells Pancreas Homo sapiens (Human) CVCL_UL49
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
CCK8 assay; Wound Healing assay; Matrigel transmembrane invasion assay
Mechanism Description miR-21 regulates 5-FU drug resistance in pancreatic cancer by reducing the expression of its targets, PTEN and PDCD4. And PTEN and PDCD4, as tumor suppressors, not only can inhibit tumor growth and invasion, but also can downregulate the 5-FU resistance induced by miR-21 in pancreatic cancer cells.
Disease Class: Colon cancer [18]
Resistant Disease Colon cancer [ICD-11: 2B90.1]
Resistant Drug Fluorouracil
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
PI3K/AKT signaling pathway Regulation hsa04151
In Vitro Model RkO cells Colon Homo sapiens (Human) CVCL_0504
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description miR-21 can mediate the drug resistance to 5-FU by inhibiting its target PDCD4, which can regulate the expression of ABCC5 and CD44 genes.
Disease Class: Hepatocellular carcinoma [19]
Resistant Disease Hepatocellular carcinoma [ICD-11: 2C12.2]
Resistant Drug Fluorouracil
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell viability Activation hsa05200
In Vitro Model Huh-7 cells Liver Homo sapiens (Human) CVCL_0336
HepG2 cells Liver Homo sapiens (Human) CVCL_0027
PLC/PRF/5 cells Liver Homo sapiens (Human) CVCL_0485
HLE cells Liver Homo sapiens (Human) CVCL_1281
HLF cells Liver Homo sapiens (Human) CVCL_2947
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description Hepatocellular carcinoma cells transfected with pre-miR-21 were significantly resistant to IFN-alpha/5-FU. Transfection of anti-miR-21 rendered HCC cells sensitive to IFN-alpha/5-FU, and such sensitivity was weakened by transfection of siRNAs of target molecules, PETN and PDCD4, miR-21 induces chemoresistance to IFN-alpha and 5-FU, mediated through PETN and PDCD4.
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Renal carcinoma [14]
Sensitive Disease Renal carcinoma [ICD-11: 2C90.2]
Sensitive Drug Fluorouracil
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation PI3K/AKT signaling pathway Inhibition hsa04151
In Vitro Model 786-O cells Kidney Homo sapiens (Human) CVCL_1051
ACHN cells Pleural effusion Homo sapiens (Human) CVCL_1067
HK-2 cells Kidney Homo sapiens (Human) CVCL_0302
RCC10 cells Kidney Homo sapiens (Human) CVCL_6265
RCC4 cells Kidney Homo sapiens (Human) CVCL_0498
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
Celltiter96 Aqueous Non Radioactive Cell Proliferation Assay
Mechanism Description Tumor suppressor genes like PTEN, PDCD4 and TIMP3, are target genes of miR21. PTEN is a potent inhibitor of PI3k/Akt pathway, as well as a direct target of miR21.
Fulvestrant
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Breast cancer [20]
Sensitive Disease Breast cancer [ICD-11: 2C60.3]
Sensitive Drug Fulvestrant
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell invasion Inhibition hsa05200
Cell proliferation Inhibition hsa05200
PI3K/AKT/mTOR signaling pathway Regulation hsa04151
In Vitro Model MCF-7 cells Breast Homo sapiens (Human) CVCL_0031
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description miR-21 is a miRNA that is overexpressed in most tumor types, and acts as an oncogene by targeting many suppressor genes related to proliferation, apoptosis, and invasion. miR-21 facilitates tumor growth and invasion by targeting programmed cell death 4 (PDCD4), PTEN, and Bcl-2. silencing of miR-21 sensitized ER+ breast cancer cells to TAM and FUL induced cell apoptosis.
Gefitinib
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Non-small cell lung cancer [21]
Resistant Disease Non-small cell lung cancer [ICD-11: 2C25.Y]
Resistant Drug Gefitinib
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
Cell proliferation Activation hsa05200
PI3K/AKT signaling pathway Activation hsa04151
In Vitro Model PC9 cells Lung Homo sapiens (Human) CVCL_B260
PC9R cells Lung Homo sapiens (Human) CVCL_D778
In Vivo Model Nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description miR-21 overexpression is associated with the acquired resistance of EGFR-TkI in NSCLC, which might be caused by miR-21's function of activating PI3k/AkT pathway through inhibiting PTEN and PDCD4.
Gemcitabine
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Pancreatic ductal adenocarcinoma [22]
Sensitive Disease Pancreatic ductal adenocarcinoma [ICD-11: 2C10.0]
Sensitive Drug Gemcitabine
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
In Vitro Model MIA PaCa-2 cells Pancreas Homo sapiens (Human) CVCL_0428
Panc02 cells Pancreas Homo sapiens (Human) CVCL_D627
In Vivo Model Mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
qRT-PCR; Immunofluorescence (IF) staining
Experiment for
Drug Resistance
Costar Transwell Invasion Assay;
Mechanism Description Upregulating miR21 in CAFs promoted PDAC desmoplasia and increased its drug resistance to gemcitabine treatment by promoting the activation of cancer-associated fibroblasts (CAFs). miR21 mediates activation of CAFs via down-regulating PDCD4.
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Pancreatic cancer [23]
Sensitive Disease Pancreatic cancer [ICD-11: 2C10.3]
Sensitive Drug Gemcitabine
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
In Vitro Model SW1990 cells Pancreas Homo sapiens (Human) CVCL_1723
In Vivo Model Nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description miR429 sensitized gemcitabine response in GZ-resistant pancreatic cancer cells via its direct upregulation of PDCD4 expression.
IFN-alpha
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Hepatocellular carcinoma [19]
Resistant Disease Hepatocellular carcinoma [ICD-11: 2C12.2]
Resistant Drug IFN-alpha
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell viability Activation hsa05200
In Vitro Model Huh-7 cells Liver Homo sapiens (Human) CVCL_0336
HepG2 cells Liver Homo sapiens (Human) CVCL_0027
PLC/PRF/5 cells Liver Homo sapiens (Human) CVCL_0485
HLE cells Liver Homo sapiens (Human) CVCL_1281
HLF cells Liver Homo sapiens (Human) CVCL_2947
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description Hepatocellular carcinoma cells transfected with pre-miR-21 were significantly resistant to IFN-alpha/5-FU. Transfection of anti-miR-21 rendered HCC cells sensitive to IFN-alpha/5-FU, and such sensitivity was weakened by transfection of siRNAs of target molecules, PETN and PDCD4, miR-21 induces chemoresistance to IFN-alpha and 5-FU, mediated through PETN and PDCD4.
Oxaliplatin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Colorectal cancer [24]
Resistant Disease Colorectal cancer [ICD-11: 2B91.1]
Resistant Drug Oxaliplatin
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
Cell viability Activation hsa05200
In Vitro Model HT29 Cells Colon Homo sapiens (Human) CVCL_A8EZ
SW480 cells Colon Homo sapiens (Human) CVCL_0546
HCT116 cells Colon Homo sapiens (Human) CVCL_0291
Experiment for
Molecule Alteration
Western blot analysis; Luciferase reporter assay; RNA pull-down assay; RIP assay
Experiment for
Drug Resistance
MTT assay; Flow cytometry assay
Mechanism Description Overexpression of MEG3 improved oxaliplatin sensitivity of HT29/OXA and HCT116/OXA cells via suppressing miR-141 expression and upregulating PDCD4.
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Renal carcinoma [14]
Sensitive Disease Renal carcinoma [ICD-11: 2C90.2]
Sensitive Drug Oxaliplatin
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation PI3K/AKT signaling pathway Inhibition hsa04151
In Vitro Model 786-O cells Kidney Homo sapiens (Human) CVCL_1051
ACHN cells Pleural effusion Homo sapiens (Human) CVCL_1067
HK-2 cells Kidney Homo sapiens (Human) CVCL_0302
RCC10 cells Kidney Homo sapiens (Human) CVCL_6265
RCC4 cells Kidney Homo sapiens (Human) CVCL_0498
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
Celltiter96 Aqueous Non Radioactive Cell Proliferation Assay
Mechanism Description Tumor suppressor genes like PTEN, PDCD4 and TIMP3, are target genes of miR21. PTEN is a potent inhibitor of PI3k/Akt pathway, as well as a direct target of miR21.
Disease Class: Colorectal cancer [24]
Sensitive Disease Colorectal cancer [ICD-11: 2B91.1]
Sensitive Drug Oxaliplatin
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell viability Inhibition hsa05200
In Vitro Model HT29 Cells Colon Homo sapiens (Human) CVCL_A8EZ
SW480 cells Colon Homo sapiens (Human) CVCL_0546
HCT116 cells Colon Homo sapiens (Human) CVCL_0291
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
MTT assay; Flow cytometry assay
Mechanism Description Overexpression of MEG3 improved oxaliplatin sensitivity of HT29/OXA and HCT116/OXA cells via suppressing miR-141 expression and upregulating PDCD4.
Paclitaxel
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Renal carcinoma [14]
Sensitive Disease Renal carcinoma [ICD-11: 2C90.2]
Sensitive Drug Paclitaxel
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation PI3K/AKT signaling pathway Inhibition hsa04151
In Vitro Model 786-O cells Kidney Homo sapiens (Human) CVCL_1051
ACHN cells Pleural effusion Homo sapiens (Human) CVCL_1067
HK-2 cells Kidney Homo sapiens (Human) CVCL_0302
RCC10 cells Kidney Homo sapiens (Human) CVCL_6265
RCC4 cells Kidney Homo sapiens (Human) CVCL_0498
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
Celltiter96 Aqueous Non Radioactive Cell Proliferation Assay
Mechanism Description Tumor suppressor genes like PTEN, PDCD4 and TIMP3, are target genes of miR21. PTEN is a potent inhibitor of PI3k/Akt pathway, as well as a direct target of miR21.
Tamoxifen
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Breast cancer [20]
Sensitive Disease Breast cancer [ICD-11: 2C60.3]
Sensitive Drug Tamoxifen
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell invasion Inhibition hsa05200
Cell proliferation Inhibition hsa05200
PI3K/AKT/mTOR signaling pathway Regulation hsa04151
In Vitro Model MCF-7 cells Breast Homo sapiens (Human) CVCL_0031
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description miR-21 is a miRNA that is overexpressed in most tumor types, and acts as an oncogene by targeting many suppressor genes related to proliferation, apoptosis, and invasion. miR-21 facilitates tumor growth and invasion by targeting programmed cell death 4 (PDCD4), PTEN, and Bcl-2. silencing of miR-21 sensitized ER+ breast cancer cells to TAM and FUL induced cell apoptosis.
Temozolomide
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Glioma [25]
Resistant Disease Glioma [ICD-11: 2A00.1]
Resistant Drug Temozolomide
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model U251 cells Brain Homo sapiens (Human) CVCL_0021
U87 cells Brain Homo sapiens (Human) CVCL_0022
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description Ectopic overexpression of miR-497 promotes chemotherapy resistance in glioma cells by targeting PDCD4, a tumor suppressor that is involved in apoptosis. In contrast, the inhibition of miR-497 enhances apoptosis and increases the sensitivity of glioma cells to TMZ.
Topotecan
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Renal cell carcinoma [26]
Sensitive Disease Renal cell carcinoma [ICD-11: 2C90.0]
Sensitive Drug Topotecan
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell colony Inhibition hsa05200
Cell viability Inhibition hsa05200
In Vitro Model A498 cells Kidney Homo sapiens (Human) CVCL_1056
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
XTT assay
Mechanism Description Inhibition of miR-21 rescues PDCD4 and PTEN protein levels and improves chemosensitivity and therapeutic response.
Trastuzumab
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Breast cancer [27]
Resistant Disease Breast cancer [ICD-11: 2C60.3]
Resistant Drug Trastuzumab
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
PI3K signaling pathway Activation hsa04151
In Vitro Model SkBR3 cells Breast Homo sapiens (Human) CVCL_0033
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description A target prediction analysis coupled with in vitro and in vivo validations revealed that miR-21 levels inversely correlated with the expression of PTEN and PDCD4, which differentially influenced the drug sensitivity of HER2-positive breast cancer cells.miR-21 was able to affect the response to both trastuzumab and chemotherapy, triggering an IL-6/STAT3/NF-kB-mediated signaling loop and activating the PI3k pathway. These findings support the ability of miR-21 signaling to sustain EMT and shape the tumor immune microenvironment in HER2-positive breast cancer.
Disease- and Tissue-specific Abundances of This Molecule
ICD Disease Classification 02
Click to Show/Hide the Resistance Disease of This Class
Brain cancer [ICD-11: 2A00]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Nervous tissue
The Specified Disease Brain cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 8.63E-10; Fold-change: -1.89E-01; Z-score: -3.42E-01
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
The Studied Tissue Brainstem tissue
The Specified Disease Glioma
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 4.61E-01; Fold-change: 6.07E-02; Z-score: 1.96E-01
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
The Studied Tissue White matter
The Specified Disease Glioma
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 3.81E-02; Fold-change: -5.08E-01; Z-score: -6.17E-01
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
The Studied Tissue Brainstem tissue
The Specified Disease Neuroectodermal tumor
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 5.05E-04; Fold-change: 2.39E-01; Z-score: 1.05E+00
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Chronic myeloid leukemia [ICD-11: 2A20]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Whole blood
The Specified Disease Myelofibrosis
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 5.34E-01; Fold-change: -6.50E-02; Z-score: -3.54E-01
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
The Studied Tissue Whole blood
The Specified Disease Polycythemia vera
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 8.18E-01; Fold-change: -4.06E-02; Z-score: -2.21E-01
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Acute myeloid leukemia [ICD-11: 2A60]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Bone marrow
The Specified Disease Acute myeloid leukemia
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 4.63E-03; Fold-change: -1.26E-03; Z-score: -1.99E-03
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Colon cancer [ICD-11: 2B90]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Colon
The Specified Disease Colon cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 5.93E-12; Fold-change: -3.35E-01; Z-score: -4.61E-01
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 1.29E-16; Fold-change: -5.63E-01; Z-score: -8.77E-01
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Pancreatic cancer [ICD-11: 2C10]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Pancreas
The Specified Disease Pancreatic cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 1.56E-02; Fold-change: -1.05E+00; Z-score: -9.72E-01
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 8.08E-18; Fold-change: -2.00E+00; Z-score: -1.86E+00
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Liver cancer [ICD-11: 2C12]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Liver
The Specified Disease Liver cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 2.85E-01; Fold-change: -4.51E-02; Z-score: -1.31E-01
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 2.29E-01; Fold-change: -1.03E-02; Z-score: -2.74E-02
The Expression Level of Disease Section Compare with the Other Disease Section p-value: 4.04E-01; Fold-change: -8.09E-02; Z-score: -4.50E-01
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Molecule expression in tissue other than the diseased tissue of patients
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Lung cancer [ICD-11: 2C25]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Lung
The Specified Disease Lung cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 6.05E-02; Fold-change: 1.97E-02; Z-score: 5.52E-02
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 6.74E-07; Fold-change: -2.19E-01; Z-score: -5.71E-01
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Melanoma [ICD-11: 2C30]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Skin
The Specified Disease Melanoma
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 6.26E-02; Fold-change: -3.09E-01; Z-score: -3.80E-01
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Breast cancer [ICD-11: 2C60]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Breast tissue
The Specified Disease Breast cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 8.12E-04; Fold-change: 1.75E-02; Z-score: 2.67E-02
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 2.76E-03; Fold-change: -6.83E-01; Z-score: -5.50E-01
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Ovarian cancer [ICD-11: 2C73]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Ovary
The Specified Disease Ovarian cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 2.37E-01; Fold-change: -3.09E-01; Z-score: -3.87E-01
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 5.64E-01; Fold-change: -8.59E-02; Z-score: -2.12E-01
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Cervical cancer [ICD-11: 2C77]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Cervix uteri
The Specified Disease Cervical cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 3.53E-01; Fold-change: 1.16E-01; Z-score: 3.54E-01
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Prostate cancer [ICD-11: 2C82]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Prostate
The Specified Disease Prostate cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 7.13E-02; Fold-change: 3.88E-01; Z-score: 5.18E-01
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Kidney cancer [ICD-11: 2C90]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Kidney
The Specified Disease Kidney cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 5.92E-07; Fold-change: 3.74E-01; Z-score: 2.03E+00
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 1.04E-27; Fold-change: 3.18E-01; Z-score: 1.64E+00
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Bladder cancer [ICD-11: 2C94]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Bladder tissue
The Specified Disease Bladder cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 1.81E-02; Fold-change: -5.74E-01; Z-score: -1.21E+00
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
References
Ref 1 miRNA-21 regulates arsenic-induced anti-leukemia activity in myelogenous cell lines. Med Oncol. 2011 Mar;28(1):211-8. doi: 10.1007/s12032-009-9413-7. Epub 2010 Feb 9.
Ref 2 Anti-miR-21 oligonucleotide sensitizes leukemic K562 cells to arsenic trioxide by inducing apoptosis. Cancer Sci. 2010 Apr;101(4):948-54. doi: 10.1111/j.1349-7006.2010.01489.x. Epub 2010 Jan 7.
Ref 3 [Long non-coding RNA XIST modulates cisplatin resistance by altering PDCD4 and Fas-Lexpressions in human nasopharyngeal carcinoma HNE1 cells in vitro]. Nan Fang Yi Ke Da Xue Xue Bao. 2019 Mar 30;39(3):357-363. doi: 10.12122/j.issn.1673-4254.2019.03.15.
Ref 4 MicroRNA-182 modulates chemosensitivity of human non-small cell lung cancer to cisplatin by targeting PDCD4. Diagn Pathol. 2014 Jul 10;9:143. doi: 10.1186/1746-1596-9-143.
Ref 5 Inhibition of miR-141 reverses cisplatin resistance in non-small cell lung cancer cells via upregulation of programmed cell death protein 4. Eur Rev Med Pharmacol Sci. 2016 Jun;20(12):2565-72.
Ref 6 Upregulation of miR-21 in cisplatin resistant ovarian cancer via JNK-1/c-Jun pathway. PLoS One. 2014 May 27;9(5):e97094. doi: 10.1371/journal.pone.0097094. eCollection 2014.
Ref 7 microRNA-106a modulates cisplatin sensitivity by targeting PDCD4 in human ovarian cancer cells. Oncol Lett. 2014 Jan;7(1):183-188. doi: 10.3892/ol.2013.1644. Epub 2013 Oct 29.
Ref 8 The inhibition of miR-21 promotes apoptosis and chemosensitivity in ovarian cancer. Gynecol Oncol. 2014 Mar;132(3):739-44. doi: 10.1016/j.ygyno.2014.01.034. Epub 2014 Jan 25.
Ref 9 MiR-21 modulates chemosensitivity of tongue squamous cell carcinoma cells to cisplatin by targeting PDCD4. Mol Cell Biochem. 2014 May;390(1-2):253-62. doi: 10.1007/s11010-014-1976-8. Epub 2014 Mar 11.
Ref 10 Growth arrest-specific 5 attenuates cisplatin-induced apoptosis in cervical cancer by regulating STAT3 signaling via miR-21. J Cell Physiol. 2019 Jun;234(6):9605-9615. doi: 10.1002/jcp.27647. Epub 2018 Oct 23.
Ref 11 miR-150 modulates cisplatin chemosensitivity and invasiveness of muscle-invasive bladder cancer cells via targeting PDCD4 in vitro. Med Sci Monit. 2014 Oct 7;20:1850-7. doi: 10.12659/MSM.891340.
Ref 12 Anti-miR-21 oligonucleotide enhances chemosensitivity of leukemic HL60 cells to arabinosylcytosine by inducing apoptosis. Hematology. 2010 Aug;15(4):215-21. doi: 10.1179/102453310X12647083620840.
Ref 13 Involvement of microRNA-21 in mediating chemo-resistance to docetaxel in androgen-independent prostate cancer PC3 cells. Acta Pharmacol Sin. 2010 Jul;31(7):867-73. doi: 10.1038/aps.2010.48. Epub 2010 Jun 28.
Ref 14 Targeting miR-21 decreases expression of multi-drug resistant genes and promotes chemosensitivity of renal carcinoma. Tumour Biol. 2017 Jul;39(7):1010428317707372. doi: 10.1177/1010428317707372.
Ref 15 Hypoxia-induced miR-424 decreases tumor sensitivity to chemotherapy by inhibiting apoptosis. Cell Death Dis. 2014 Jun 26;5(6):e1301. doi: 10.1038/cddis.2014.240.
Ref 16 MicroRNA-21 induces 5-fluorouracil resistance in human pancreatic cancer cells by regulating PTEN and PDCD4. Cancer Med. 2016 Apr;5(4):693-702. doi: 10.1002/cam4.626. Epub 2016 Feb 10.
Ref 17 MicroRNA-320a promotes 5-FU resistance in human pancreatic cancer cells. Sci Rep. 2016 Jun 9;6:27641. doi: 10.1038/srep27641.
Ref 18 [Drug resistance of colon cancer cells to 5-fluorouracil mediated by microRNA-21]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2015 Oct;32(5):620-4. doi: 10.3760/cma.j.issn.1003-9406.2015.05.003.
Ref 19 MicroRNA-21 induces resistance to the anti-tumour effect of interferon-Alpha/5-fluorouracil in hepatocellular carcinoma cells. Br J Cancer. 2010 Nov 9;103(10):1617-26. doi: 10.1038/sj.bjc.6605958. Epub 2010 Oct 26.
Ref 20 Silencing of MicroRNA-21 confers the sensitivity to tamoxifen and fulvestrant by enhancing autophagic cell death through inhibition of the PI3K-AKT-mTOR pathway in breast cancer cells. Biomed Pharmacother. 2016 Feb;77:37-44. doi: 10.1016/j.biopha.2015.11.005. Epub 2015 Dec 12.
Ref 21 MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer. Lung Cancer. 2014 Feb;83(2):146-53. doi: 10.1016/j.lungcan.2013.11.003. Epub 2013 Nov 13.
Ref 22 Micro-RNA-21 Regulates Cancer-Associated Fibroblast-Mediated Drug Resistance in Pancreatic Cancer. Oncol Res. 2018 Jul 5;26(6):827-835. doi: 10.3727/096504017X14934840662335. Epub 2017 May 5.
Ref 23 MicroRNA-429 sensitizes pancreatic cancer cells to gemcitabine through regulation of PDCD4. Am J Transl Res. 2017 Nov 15;9(11):5048-5055. eCollection 2017.
Ref 24 Overexpression of MEG3 sensitizes colorectal cancer cells to oxaliplatin through regulation of miR-141/PDCD4 axis. Biomed Pharmacother. 2018 Oct;106:1607-1615. doi: 10.1016/j.biopha.2018.07.131. Epub 2018 Jul 29.
Ref 25 Hypoxia-induced miR-497 decreases glioma cell sensitivity to TMZ by inhibiting apoptosis. FEBS Lett. 2014 Sep 17;588(18):3333-9. doi: 10.1016/j.febslet.2014.07.021. Epub 2014 Jul 29.
Ref 26 Small Molecule Inhibition of MicroRNA miR-21 Rescues Chemosensitivity of Renal-Cell Carcinoma to Topotecan. J Med Chem. 2018 Jul 26;61(14):5900-5909. doi: 10.1021/acs.jmedchem.7b01891. Epub 2018 Jul 11.
Ref 27 MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget. 2015 Nov 10;6(35):37269-80. doi: 10.18632/oncotarget.5495.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.