Drug (ID: DG01467) and It's Reported Resistant Information
Name
LY-294002
Synonyms
154447-36-6; LY294002; LY 294002; 2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one; LY-294002; 2-morpholino-8-phenyl-4H-chromen-4-one; 2-morpholin-4-yl-8-phenyl-4H-chromen-4-one; UNII-31M2U1DVID; 2-morpholin-4-yl-8-phenylchromen-4-one; 2-(morpholin-4-yl)-8-phenylchromen-4-one; 15447-36-6; 2-(morpholin-4-yl)-8-phenyl-4H-chromen-4-one; NSC 697286; 31M2U1DVID; 2-MORPHOLIN-4-YL-7-PHENYL-4H-CHROMEN-4-ONE; CHEMBL98350; 4H-1-Benzopyran-4-one, 2-(4-morpholinyl)-8-phenyl-; CHEBI:65329; SF 1101; LY2; Ly 294002 HCl; LY-294,002; 2-Morpholin-4-yl-8-phenyl-chromen-4-one; BMK1-D5; Lys 294002; 4azt; 2-morpholino-8-phenyl-chromen-4-one; Kinome_3543; Tocris-1130; 1yi3; BiomolKI_000029; Lopac-L-9908; 8-Phenyl-2-(morpholin-4-yl)-chromen-4-one; BiomolKI2_000037; CBiol_002046; Lopac0_000710; SCHEMBL94377; BSPBio_001223; KBioGR_000563; KBioSS_000563; MLS006010131; 2-Morpholino-8-phenylchromone; 2-(4-morpholino)-8-phenyl-4H-1-benzopyran-4-one; 4H-1-Benzopyran-4-one, 2-(4-morpholinyl)-8-phenyl; GTPL6004; ZINC6014; DTXSID6042650; BCBcMAP01_000117; BDBM12915; KBio2_000563; KBio2_003131; KBio2_005699; KBio3_001005; KBio3_001006; EX-A073; SYN1108; BCPP000177; Bio1_000332; Bio1_000821; Bio1_001310; Bio2_000442; Bio2_000922; HMS1362M05; HMS1792M05; HMS1990M05; HMS3229G17; HMS3403M05; HMS3649E04; HMS3654M21; AMY40921; BCP00195; HSCI1_000206; NSC697286; NSC755769; s1105; AKOS017344742; BCP9000880; CCG-100633; CS-0150; DB02656; NSC-697286; NSC-755769; QC-7260; SB10965; SDCCGSBI-0050688.P003; SF-1101; IDI1_002197; NCGC00015622-01; NCGC00015622-02; NCGC00015622-03; NCGC00015622-04; NCGC00015622-05; NCGC00015622-06; NCGC00015622-07; NCGC00015622-23; NCGC00015622-27; NCGC00025020-01; NCGC00025020-02; NCGC00025020-03; NCGC00025020-04; NCGC00179253-01; AC-30295; AS-16252; HY-10108; NCI60_034712; SMR002530642; LY-924002; FT-0660382; M2410; SW217688-2; X7411; EC-000.2341; 2-Morpholino-8-phenyl-4-oxo-4H-1-benzopyran; K00235; J-510126; Q4042503; SR-01000076245-7; 4H-1-Benzopyran-4-one,2-(4-morpholinyl)-8-phenyl-; BRD-K27305650-001-05-9; InSolution LY 294002 - CAS 154447-36-6; LY-294,002 hydrochloride, solid, >=98% (HPLC); LY 294002 - CAS 154447-36-6; 4H-1-Benzopyran-4-one, 2-(4-morpholinyl)-8-phenyl- (9CI); H-1-Benzopyran-4-one, 2-(4-morpholinyl)-8-phenyl- (9CI); LY 294002; 2-(4-Morpholino)-8-phenyl-4H-1-benzopyran-4-one
    Click to Show/Hide
Indication
In total 1 Indication(s)
Diarrhea [ICD-11: DA90]
Phase 1
[1]
Structure
Target Opioid receptor delta (OPRD1) OPRD_HUMAN [2]
Click to Show/Hide the Molecular Information and External Link(s) of This Drug
Formula
2
IsoSMILES
C1COCCN1C2=CC(=O)C3=C(O2)C(=CC=C3)C4=CC=CC=C4
InChI
InChI=1S/C19H17NO3/c21-17-13-18(20-9-11-22-12-10-20)23-19-15(7-4-8-16(17)19)14-5-2-1-3-6-14/h1-8,13H,9-12H2
InChIKey
CZQHHVNHHHRRDU-UHFFFAOYSA-N
PubChem CID
3973
ChEBI ID
CHEBI:65329
TTD Drug ID
D0CS2F
DrugBank ID
DB02656
Type(s) of Resistant Mechanism of This Drug
  ADTT: Aberration of the Drug's Therapeutic Target
  UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Their Corresponding Diseases
ICD-02: Benign/in-situ/malignant neoplasm
Click to Show/Hide the Resistance Disease of This Class
Esophageal cancer [ICD-11: 2B70]
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
  Aberration of the Drug's Therapeutic Target (ADTT) Click to Show/Hide
Key Molecule: PI3-kinase alpha (PIK3CA) [1]
Sensitive Disease Oesophagus adenocarcinoma [ICD-11: 2B70.0]
Molecule Alteration Missense mutation
p.E545K (c.1633G>A)
Experimental Note Identified from the Human Clinical Data
In Vitro Model TE cells Eye Oreochromis mossambicus (Mozambique tilapia) CVCL_YD05
KYSE cells N.A. N.A. N.A.
Experiment for
Molecule Alteration
DNA sequencing assay
Experiment for
Drug Resistance
MTT assay
Mechanism Description The missense mutation p.E545K (c.1633G>A) in gene PIK3CA cause the sensitivity of LY-294002 by aberration of the drug's therapeutic target
Melanoma [ICD-11: 2C30]
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
  Aberration of the Drug's Therapeutic Target (ADTT) Click to Show/Hide
Key Molecule: Serine/threonine-protein kinase mTOR (mTOR) [2]
Sensitive Disease Melanoma [ICD-11: 2C30.0]
Molecule Alteration Missense mutation
p.H1968Y (c.5902C>T)
Experimental Note Identified from the Human Clinical Data
In Vitro Model HEK 292T cells Kidney Homo sapiens (Human) N.A.
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
CCK-8 assay
Prostate cancer [ICD-11: 2C82]
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
  Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Key Molecule: Androgen receptor (AR) [3]
Sensitive Disease Prostate cancer [ICD-11: 2C82.0]
Molecule Alteration Function
Activation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation PI3K/AKT signaling pathway Inhibition hsa04151
In Vitro Model LNCaP clone FGC cells N.A. Homo sapiens (Human) CVCL_1379
22Rv-1 cells Prostate Homo sapiens (Human) CVCL_1045
Experiment for
Molecule Alteration
Cell protein extraction assay; Western blot assay; qRT-PCR; Luciferase reporter assay
Experiment for
Drug Resistance
MTT assay
Mechanism Description This study revealed the role of p35-CDK5 in between PI3K/Akt and AR by utilizing LNCaP and 22Rv1 cells. Through the TCGA database analysis, we observed a positive correlation between PTEN and p35 expression, implying a potential negative correlation between PI3K/Akt activation and p35-CDK5. Inhibiting PI3K/Akt with LY294002, Capivasertib (AZD5363), or using an inactive Akt mutant significantly increased p35 expression and subsequently enhanced AR stability and activation in PCa cells. On the other hand, CDK5-knockdown reversed these effects. The involvement of the beta-catenin/Egr1-axis was observed in regulating PI3K/Akt inhibition and p35-CDK5 activation, implying a possible mechanistic connection. Importantly, CDK5 knockdown further reduced PI3K/Akt-inhibition-induced AR and cell viability maintenance, suggesting a compensatory role for CDK5-AR in maintaining cell viability under Akt inhibition. In conclusion, PI3K/Akt inhibition could trigger p35-CDK5-dependent AR activation and cell viability, highlighting p35-CDK5 as a critical link connecting PI3K/Akt inhibition to AR activation and pivotal in PCa cell resistance to PI3K/Akt blockade.
References
Ref 1 PIK3CA mutation status in Japanese esophageal squamous cell carcinomaJ Surg Res. 2008 Apr;145(2):320-6. doi: 10.1016/j.jss.2007.03.044. Epub 2008 Feb 11.
Ref 2 Analysis of mTOR Gene Aberrations in Melanoma Patients and Evaluation of Their Sensitivity to PI3K-AKT-mTOR Pathway InhibitorsClin Cancer Res. 2016 Feb 15;22(4):1018-27. doi: 10.1158/1078-0432.CCR-15-1110. Epub 2015 Oct 21.
Ref 3 PI3K/Akt inhibition promotes AR activity and prostate cancer cell proliferation through p35-CDK5 modulation. Biochim Biophys Acta Mol Basis Dis. 2025 Feb;1871(2):167568.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Yu.