Molecule Information
General Information of the Molecule (ID: Mol01493)
Name |
hsa-mir-424
,Homo sapiens
|
||||
---|---|---|---|---|---|
Synonyms |
microRNA 424
Click to Show/Hide
|
||||
Molecule Type |
Precursor miRNA
|
||||
Gene Name |
MIR424
|
||||
Gene ID | |||||
Location |
chrX:134546614-134546711[-]
|
||||
Sequence |
CGAGGGGAUACAGCAGCAAUUCAUGUUUUGAAGUGUUCUAAAUGGUUCAAAACGUGAGGC
GCUGCUAUACCCCCUCGUGGGGAAGGUAGAAGGUGGGG Click to Show/Hide
|
||||
Ensembl ID | |||||
HGNC ID | |||||
Precursor Accession | |||||
Click to Show/Hide the Complete Species Lineage | |||||
Type(s) of Resistant Mechanism of This Molecule
EADR: Epigenetic Alteration of DNA, RNA or Protein
Drug Resistance Data Categorized by Drug
Approved Drug(s)
4 drug(s) in total
Cisplatin
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Epithelial ovarian cancer | [1] | |||
Sensitive Disease | Epithelial ovarian cancer [ICD-11: 2B5D.0] | |||
Sensitive Drug | Cisplatin | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | CD80/CTLA-4 signaling pathway | Regulation | hsa04514 | |
Cell apoptosis | Activation | hsa04210 | ||
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | SkOV3 cells | Ovary | Homo sapiens (Human) | CVCL_0532 |
OVCAR3 cells | Ovary | Homo sapiens (Human) | CVCL_0465 | |
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
T-cell apoptosis assay | |||
Mechanism Description | High expression levels of miR-424(322) were positively correlated with the PFS of ovarian cancer patients. miR-424(322) overexpression reduced PD-L1 and CD80 expression through direct binding to the 3'-UTR of these genes. Furthermore, low miR-424(322) and high PD-L1 expression were significantly correlated and strongly associated with chemoresistant phenotypes in ovarian cancer cells and tissues. Restoration of miR-424(322) expression (+) the sensitivity of cancer cells to drug treatment and was accompanied by T-cell activation by blocking the PD-L1 immune checkpoint in both in vitro and in vivo models. Our current findings indicate that miR-424(322) regulates PD-L1 and CD80 expression. Therefore, miR-424(322) might serve as a therapeutic target to enhance the chemosensitivity of ovarian cancer cells through checkpoint blockage, which thereby promotes the T-cell response in attacking tumour cells. | |||
Disease Class: Epidermoid carcinoma | [2] | |||
Sensitive Disease | Epidermoid carcinoma [ICD-11: 2C31.Z] | |||
Sensitive Drug | Cisplatin | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
In Vitro Model | KB-3-1 cells | Lung | Homo sapiens (Human) | CVCL_2088 |
KB-CP.5 cells | Lung | Homo sapiens (Human) | CVCL_IP04 | |
KB-CP20 cells | Lung | Homo sapiens (Human) | CVCL_IP06 | |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | Overexpression of the cell cycle kinases WEE1 and CHk1 occurred commonly in cisplatin-resistant cells, miR-15/16/195/424/497 family sensitize cisplatin-resistant cells to apoptosis by targeting WEE1 and CHk1. |
Docetaxel
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Lung adenocarcinoma | [3] | |||
Resistant Disease | Lung adenocarcinoma [ICD-11: 2C25.0] | |||
Resistant Drug | Docetaxel | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
In Vitro Model | SPC-A1 cells | Lung | Homo sapiens (Human) | CVCL_6955 |
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
Clonogenic assay | |||
Mechanism Description | Six miRNAs (miR-192, 200b, 194, 424, 98 and 212) exhibited more than 2-fold changes in their expression levels, which were validated by qRT-PCR. The expression of three miRNAs (miR-200b, 194 and 212) was significantly down-regulated in SPC-A1/docetaxel cells, while the expression of other three miRNAs (miR-192, 424 and 98) was significantly up-regulated in SPC-A1/docetaxel cells (P < 0.01). |
Doxorubicin
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Colon cancer | [4] | |||
Resistant Disease | Colon cancer [ICD-11: 2B90.1] | |||
Resistant Drug | Doxorubicin | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Inhibition | hsa04210 | |
Cell proliferation | Activation | hsa05200 | ||
In Vitro Model | HCT116 cells | Colon | Homo sapiens (Human) | CVCL_0291 |
A375 cells | Skin | Homo sapiens (Human) | CVCL_0132 | |
U251 cells | Brain | Homo sapiens (Human) | CVCL_0021 | |
HEK293T cells | Kidney | Homo sapiens (Human) | CVCL_0063 | |
PARP cells | Skin | Homo sapiens (Human) | N.A. | |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | Hypoxia induces miR-424 expression and that miR-424 in turn suppresses the level of PDCD4 protein, a tumor suppressor that is involved in apoptosis, by targeting its 3' untranslated region. Functionally, miR-424 overexpression decreases the sensitivity of cancer cells (HCT116 and A375) to doxorubicin (Dox) and etoposide. In contrast, the inhibition of miR-424 (+) apoptosis and increased the sensitivity of cancer cells to Dox. In a xenograft tumor model, miR-424 overexpression promoted tumor growth following Dox treatment, suggesting that miR-424 promotes tumor cell resistance to Dox. Furthermore, miR-424 levels are inversely correlated with PDCD4 expression in clinical breast cancer samples. | |||
Disease Class: Melanoma | [4] | |||
Resistant Disease | Melanoma [ICD-11: 2C30.0] | |||
Resistant Drug | Doxorubicin | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Inhibition | hsa04210 | |
Cell proliferation | Activation | hsa05200 | ||
In Vitro Model | HCT116 cells | Colon | Homo sapiens (Human) | CVCL_0291 |
A375 cells | Skin | Homo sapiens (Human) | CVCL_0132 | |
U251 cells | Brain | Homo sapiens (Human) | CVCL_0021 | |
HEK293T cells | Kidney | Homo sapiens (Human) | CVCL_0063 | |
PARP cells | Skin | Homo sapiens (Human) | N.A. | |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | Hypoxia induces miR-424 expression and that miR-424 in turn suppresses the level of PDCD4 protein, a tumor suppressor that is involved in apoptosis, by targeting its 3' untranslated region. Functionally, miR-424 overexpression decreases the sensitivity of cancer cells (HCT116 and A375) to doxorubicin (Dox) and etoposide. In contrast, the inhibition of miR-424 (+) apoptosis and increased the sensitivity of cancer cells to Dox. In a xenograft tumor model, miR-424 overexpression promoted tumor growth following Dox treatment, suggesting that miR-424 promotes tumor cell resistance to Dox. Furthermore, miR-424 levels are inversely correlated with PDCD4 expression in clinical breast cancer samples. |
Etoposide
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Colon cancer | [4] | |||
Resistant Disease | Colon cancer [ICD-11: 2B90.1] | |||
Resistant Drug | Etoposide | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Inhibition | hsa04210 | |
Cell proliferation | Activation | hsa05200 | ||
In Vitro Model | HCT116 cells | Colon | Homo sapiens (Human) | CVCL_0291 |
A375 cells | Skin | Homo sapiens (Human) | CVCL_0132 | |
U251 cells | Brain | Homo sapiens (Human) | CVCL_0021 | |
HEK293T cells | Kidney | Homo sapiens (Human) | CVCL_0063 | |
PARP cells | Skin | Homo sapiens (Human) | N.A. | |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | Hypoxia induces miR-424 expression and that miR-424 in turn suppresses the level of PDCD4 protein, a tumor suppressor that is involved in apoptosis, by targeting its 3' untranslated region. Functionally, miR-424 overexpression decreases the sensitivity of cancer cells (HCT116 and A375) to doxorubicin (Dox) and etoposide. In contrast, the inhibition of miR-424 (+) apoptosis and increased the sensitivity of cancer cells to Dox. In a xenograft tumor model, miR-424 overexpression promoted tumor growth following Dox treatment, suggesting that miR-424 promotes tumor cell resistance to Dox. Furthermore, miR-424 levels are inversely correlated with PDCD4 expression in clinical breast cancer samples. | |||
Disease Class: Melanoma | [4] | |||
Resistant Disease | Melanoma [ICD-11: 2C30.0] | |||
Resistant Drug | Etoposide | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Inhibition | hsa04210 | |
Cell proliferation | Activation | hsa05200 | ||
In Vitro Model | HCT116 cells | Colon | Homo sapiens (Human) | CVCL_0291 |
A375 cells | Skin | Homo sapiens (Human) | CVCL_0132 | |
U251 cells | Brain | Homo sapiens (Human) | CVCL_0021 | |
HEK293T cells | Kidney | Homo sapiens (Human) | CVCL_0063 | |
PARP cells | Skin | Homo sapiens (Human) | N.A. | |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | Hypoxia induces miR-424 expression and that miR-424 in turn suppresses the level of PDCD4 protein, a tumor suppressor that is involved in apoptosis, by targeting its 3' untranslated region. Functionally, miR-424 overexpression decreases the sensitivity of cancer cells (HCT116 and A375) to doxorubicin (Dox) and etoposide. In contrast, the inhibition of miR-424 (+) apoptosis and increased the sensitivity of cancer cells to Dox. In a xenograft tumor model, miR-424 overexpression promoted tumor growth following Dox treatment, suggesting that miR-424 promotes tumor cell resistance to Dox. Furthermore, miR-424 levels are inversely correlated with PDCD4 expression in clinical breast cancer samples. |
Clinical Trial Drug(s)
1 drug(s) in total
TRAIL
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Acute myeloid leukemia | [5] | |||
Sensitive Disease | Acute myeloid leukemia [ICD-11: 2A60.0] | |||
Sensitive Drug | TRAIL | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
In Vitro Model | HL60 cells | Peripheral blood | Homo sapiens (Human) | CVCL_0002 |
K562 cells | Blood | Homo sapiens (Human) | CVCL_0004 | |
K562/A02 cells | Blood | Homo sapiens (Human) | CVCL_0368 | |
NB4 cells | Bone marrow | Homo sapiens (Human) | CVCL_0005 | |
HL-60/ADR cells | Blood | Homo sapiens (Human) | CVCL_0304 | |
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | miR-424 and miR-27a increase TRAIL sensitivity of acute myeloid leukemia by targeting PLAG1. |
References
If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.