General Information of the Molecule (ID: Mol00097)
Name
Insulin-like growth factor 1 receptor (IGF1R) ,Homo sapiens
Molecule Type
Protein
Gene Name
IGF1R
Gene ID
3480
Location
chr15:98648539-98964530[+]
Sequence
MKSGSGGGSPTSLWGLLFLSAALSLWPTSGEICGPGIDIRNDYQQLKRLENCTVIEGYLH
ILLISKAEDYRSYRFPKLTVITEYLLLFRVAGLESLGDLFPNLTVIRGWKLFYNYALVIF
EMTNLKDIGLYNLRNITRGAIRIEKNADLCYLSTVDWSLILDAVSNNYIVGNKPPKECGD
LCPGTMEEKPMCEKTTINNEYNYRCWTTNRCQKMCPSTCGKRACTENNECCHPECLGSCS
APDNDTACVACRHYYYAGVCVPACPPNTYRFEGWRCVDRDFCANILSAESSDSEGFVIHD
GECMQECPSGFIRNGSQSMYCIPCEGPCPKVCEEEKKTKTIDSVTSAQMLQGCTIFKGNL
LINIRRGNNIASELENFMGLIEVVTGYVKIRHSHALVSLSFLKNLRLILGEEQLEGNYSF
YVLDNQNLQQLWDWDHRNLTIKAGKMYFAFNPKLCVSEIYRMEEVTGTKGRQSKGDINTR
NNGERASCESDVLHFTSTTTSKNRIIITWHRYRPPDYRDLISFTVYYKEAPFKNVTEYDG
QDACGSNSWNMVDVDLPPNKDVEPGILLHGLKPWTQYAVYVKAVTLTMVENDHIRGAKSE
ILYIRTNASVPSIPLDVLSASNSSSQLIVKWNPPSLPNGNLSYYIVRWQRQPQDGYLYRH
NYCSKDKIPIRKYADGTIDIEEVTENPKTEVCGGEKGPCCACPKTEAEKQAEKEEAEYRK
VFENFLHNSIFVPRPERKRRDVMQVANTTMSSRSRNTTAADTYNITDPEELETEYPFFES
RVDNKERTVISNLRPFTLYRIDIHSCNHEAEKLGCSASNFVFARTMPAEGADDIPGPVTW
EPRPENSIFLKWPEPENPNGLILMYEIKYGSQVEDQRECVSRQEYRKYGGAKLNRLNPGN
YTARIQATSLSGNGSWTDPVFFYVQAKTGYENFIHLIIALPVAVLLIVGGLVIMLYVFHR
KRNNSRLGNGVLYASVNPEYFSAADVYVPDEWEVAREKITMSRELGQGSFGMVYEGVAKG
VVKDEPETRVAIKTVNEAASMRERIEFLNEASVMKEFNCHHVVRLLGVVSQGQPTLVIME
LMTRGDLKSYLRSLRPEMENNPVLAPPSLSKMIQMAGEIADGMAYLNANKFVHRDLAARN
CMVAEDFTVKIGDFGMTRDIYETDYYRKGGKGLLPVRWMSPESLKDGVFTTYSDVWSFGV
VLWEIATLAEQPYQGLSNEQVLRFVMEGGLLDKPDNCPDMLFELMRMCWQYNPKMRPSFL
EIISSIKEEMEPGFREVSFYYSEENKLPEPEELDLEPENMESVPLDPSASSSSLPLPDRH
SGHKAENGPGPGVLVLRASFDERQPYAHMNGGRKNERALPLPQSSTC
    Click to Show/Hide
Function
Receptor tyrosine kinase which mediates actions of insulin-like growth factor 1 (IGF1). Binds IGF1 with high affinity and IGF2 and insulin (INS) with a lower affinity. The activated IGF1R is involved in cell growth and survival control. IGF1R is crucial for tumor transformation and survival of malignant cell. Ligand binding activates the receptor kinase, leading to receptor autophosphorylation, and tyrosines phosphorylation of multiple substrates, that function as signaling adapter proteins including, the insulin-receptor substrates (IRS1/2), Shc and 14-3-3 proteins. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway and the Ras-MAPK pathway. The result of activating the MAPK pathway is increased cellular proliferation, whereas activating the PI3K pathway inhibits apoptosis and stimulates protein synthesis. Phosphorylated IRS1 can activate the 85 kDa regulatory subunit of PI3K (PIK3R1), leading to activation of several downstream substrates, including protein AKT/PKB. AKT phosphorylation, in turn, enhances protein synthesis through mTOR activation and triggers the antiapoptotic effects of IGFIR through phosphorylation and inactivation of BAD. In parallel to PI3K-driven signaling, recruitment of Grb2/SOS by phosphorylated IRS1 or Shc leads to recruitment of Ras and activation of the ras-MAPK pathway. In addition to these two main signaling pathways IGF1R signals also through the Janus kinase/signal transducer and activator of transcription pathway (JAK/STAT). Phosphorylation of JAK proteins can lead to phosphorylation/activation of signal transducers and activators of transcription (STAT) proteins. In particular activation of STAT3, may be essential for the transforming activity of IGF1R. The JAK/STAT pathway activates gene transcription and may be responsible for the transforming activity. JNK kinases can also be activated by the IGF1R. IGF1 exerts inhibiting activities on JNK activation via phosphorylation and inhibition of MAP3K5/ASK1, which is able to directly associate with the IGF1R.; FUNCTION: When present in a hybrid receptor with INSR, binds IGF1. 12138094 shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, 16831875 shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin.
    Click to Show/Hide
Uniprot ID
IGF1R_HUMAN
Ensembl ID
ENSG00000140443
HGNC ID
HGNC:5465
        Click to Show/Hide the Complete Species Lineage
Kingdom: Metazoa
Phylum: Chordata
Class: Mammalia
Order: Primates
Family: Hominidae
Genus: Homo
Species: Homo sapiens
Type(s) of Resistant Mechanism of This Molecule
  EADR: Epigenetic Alteration of DNA, RNA or Protein
  RTDM: Regulation by the Disease Microenvironment
  UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Drug
Approved Drug(s)
15 drug(s) in total
Click to Show/Hide the Full List of Drugs
Afatinib
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Breast cancer [1]
Sensitive Disease Breast cancer [ICD-11: 2C60.3]
Sensitive Drug Afatinib
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell invasion Inhibition hsa05200
Cell migration Inhibition hsa04670
In Vitro Model SkBR3 cells Breast Homo sapiens (Human) CVCL_0033
HCC1954 cells Breast Homo sapiens (Human) CVCL_1259
Experiment for
Molecule Alteration
qPCR
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description Introducing miR-630 into cells with innate- or acquired- resistance to HER-drugs significantly restored the efficacy of lapatinib, neratinib and afatinib; through a mechanism that at least partly, involve miR-630's regulation of IGF1R. Blocking miR-630 induced resistance/insensitivity to these drugs. Cellular motility, invasion, and anoikis were also observed as significantly altered by miR-630 manipulation, whereby introducing miR-630 into cells reduced cellular aggression while inhibition of miR-630 induced a more aggressive cellular phenotype.
Cisplatin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Non-small cell lung cancer [2]
Resistant Disease Non-small cell lung cancer [ICD-11: 2C25.Y]
Resistant Drug Cisplatin
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell proliferation Activation hsa05200
IGF1R/AKT/PI3K signaling pathway Activation hsa05224
In Vitro Model A549 cells Lung Homo sapiens (Human) CVCL_0023
H1299 cells Lung Homo sapiens (Human) CVCL_0060
NCI-H358 cells Lung Homo sapiens (Human) CVCL_1559
NCI-H292 cells Lung Homo sapiens (Human) CVCL_0455
NCI-H460 cells Lung Homo sapiens (Human) CVCL_0459
NCI-H838 cells Lung Homo sapiens (Human) CVCL_1594
Experiment for
Molecule Alteration
Western blot analysis; RT-qPCR
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description Long non-coding RNA EGFR-AS1 Can enhance IGF1R expression by suppressing miR-223 expression to promotes cisplatin resistance in the non-small cell lung cancer.
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Melanoma [3]
Resistant Disease Melanoma [ICD-11: 2C30.0]
Resistant Drug Cisplatin
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation AKT/P53 signaling pathway Regulation hsa04151
Cell viability Activation hsa05200
In Vitro Model M8 cells Skin Homo sapiens (Human) N.A.
Sk-Mel-19 cells Skin Homo sapiens (Human) CVCL_6025
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
MTS assay
Mechanism Description miR-30a-5p was over-expressed in cisplatin resistant melanoma cells and could influence the activity of PI3k/AkT and the protein level of P53 by targeting IGF1R gene.
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Regulation by the Disease Microenvironment (RTDM) Click to Show/Hide
Disease Class: Ovarian cancer [4]
Sensitive Disease Ovarian cancer [ICD-11: 2C73.0]
Sensitive Drug Cisplatin
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell invasion Inhibition hsa05200
Cell migration Inhibition hsa04670
Cell proliferation Inhibition hsa05200
In Vitro Model SkOV3 cells Ovary Homo sapiens (Human) CVCL_0532
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description Overexpression of miR-1294 ameliorated cisplatin-resistant OC malignancy via inhibiting IGF1R.
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Gastric cancer [5], [6]
Sensitive Disease Gastric cancer [ICD-11: 2B72.1]
Sensitive Drug Cisplatin
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell proliferation Inhibition hsa05200
IGF1R signaling pathway Inhibition hsa05200
IGF1R/IRS1 signaling pathway Regulation hsa04212
In Vitro Model MGC-803 cells Gastric Homo sapiens (Human) CVCL_5334
SGC7901 cells Gastric Homo sapiens (Human) CVCL_0520
BGC823 cells Gastric Homo sapiens (Human) CVCL_3360
MkN-45 cells Gastric Homo sapiens (Human) CVCL_0434
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
MTT assay; Clonogenic assay
Mechanism Description Enforced miR-1271 expression repressed the protein levels of its targets, inhibited proliferation of SGC7901/DDP cells, and sensitized SGC7901/DDP cells to DDP-induced apoptosis. Overall, on the basis of the results of our study, we proposed that miR-1271 could regulate cisplatin resistance in human gastric cancer cells, at least partially, via targeting the IGF1R/IRS1 pathway. and miR-503 was significantly downregulated in gastric cancer tissues and several gastric cancer cell lines. Additionally, downregulation of miR-503 in the cisplatin (DDP)-resistant gastric cancer cell line SGC7901/DDP was concurrent with the upregulation of insulin-like growth factor-1 receptor (IGF1R) and B-cell lymphoma 2 (BCL2) expression compared with the parental SGC7901 cell line. An in vitro drug sensitivity assay showed that overexpression of miR-503 sensitized SGC7901/DDP cells to cisplatin. The luciferase activity of reporters driven by IGF1R and BCL2 3'-untranslated regions in SGC7901/DDP cells suggested that IGF1R and BCL2 were both direct target genes of miR-503. Enforced miR-503 expression in SGC7901/DDP cells reduced expression of the target proteins, inhibited proliferation, and sensitized the cells to DDP-induced apoptosis.
Disease Class: Colorectal cancer [7]
Sensitive Disease Colorectal cancer [ICD-11: 2B91.1]
Sensitive Drug Cisplatin
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell migration Inhibition hsa04670
Cell proliferation Inhibition hsa05200
MEK/ERK signaling pathway Inhibition hsa04011
PI3K/AKT signaling pathway Inhibition hsa04151
In Vitro Model SW480 cells Colon Homo sapiens (Human) CVCL_0546
SW620 cells Colon Homo sapiens (Human) CVCL_0547
HCT116 cells Colon Homo sapiens (Human) CVCL_0291
LOVO cells Colon Homo sapiens (Human) CVCL_0399
COLO 205 cells Colon Homo sapiens (Human) CVCL_0218
HCT28 cells Colon Homo sapiens (Human) N.A.
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
MTS assay
Mechanism Description IGF1-R has an important role in mediating activation of the PI3k/Akt pathway, miR-497 inhibits PI3k/Akt signalling. Down-regulation of miR-497 is an important mechanism of upregulation of IGF1-R in CRC cells that contributes to malignancy of CRC.
Doxorubicin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Breast cancer [8]
Resistant Disease Breast cancer [ICD-11: 2C60.3]
Resistant Drug Doxorubicin
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
Cell proliferation Activation hsa05200
In Vitro Model MCF-7 cells Breast Homo sapiens (Human) CVCL_0031
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
MTT assay; Flow cytometry assay
Mechanism Description miR-452 could modulate the sensitivity of breast cancer cells to ADR, maybe in part by regulating the expression of IGF-1R.
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Hepatocellular carcinoma [9]
Sensitive Disease Hepatocellular carcinoma [ICD-11: 2C12.2]
Sensitive Drug Doxorubicin
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation IGF1/IGF1R signaling pathway Inhibition hsa05200
In Vitro Model Huh-7 cells Liver Homo sapiens (Human) CVCL_0336
HepG2 cells Liver Homo sapiens (Human) CVCL_0027
Experiment for
Molecule Alteration
Dual luciferase assay; Western blot analysis
Experiment for
Drug Resistance
Propidium Iodide (PI) Staining
Mechanism Description IGF1 is a hub gene in HCC and is involved in the p53 signaling pathway regulation. miR379 can sensitize HCC cells to chemotherapeutic reagents via targeting IGF1R and suppressing its expression, and suppressing the IGF1/IGF1R signaling pathway.
Erlotinib
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Non-small cell lung cancer [10]
Sensitive Disease Non-small cell lung cancer [ICD-11: 2C25.Y]
Sensitive Drug Erlotinib
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell invasion Inhibition hsa05200
Cell migration Inhibition hsa04670
Cell proliferation Inhibition hsa05200
IGF-1R/AKT/S6 signaling pathway Regulation hsa05226
In Vitro Model PC9 cells Lung Homo sapiens (Human) CVCL_B260
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description miR-223 inhibits IGF-1R/Akt/S6 signaling, and this effect is reversed by the exogenous expression of IGF-1. Overexpression of miR-223 enhances the sensitivity of PC-9/ER cells to erlotinib by inducing apoptosis.
Fluorouracil
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Hepatocellular carcinoma [9]
Sensitive Disease Hepatocellular carcinoma [ICD-11: 2C12.2]
Sensitive Drug Fluorouracil
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation IGF1/IGF1R signaling pathway Inhibition hsa05200
In Vitro Model Huh-7 cells Liver Homo sapiens (Human) CVCL_0336
HepG2 cells Liver Homo sapiens (Human) CVCL_0027
Experiment for
Molecule Alteration
Dual luciferase assay; Western blot analysis
Experiment for
Drug Resistance
Propidium Iodide (PI) Staining
Mechanism Description IGF1 is a hub gene in HCC and is involved in the p53 signaling pathway regulation. miR379 can sensitize HCC cells to chemotherapeutic reagents via targeting IGF1R and suppressing its expression, and suppressing the IGF1/IGF1R signaling pathway.
Disease Class: Colon cancer [11]
Sensitive Disease Colon cancer [ICD-11: 2B90.1]
Sensitive Drug Fluorouracil
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation PI3K/AKT signaling pathway Inhibition hsa04151
In Vitro Model HT29 Cells Colon Homo sapiens (Human) CVCL_A8EZ
HCT116 cells Colon Homo sapiens (Human) CVCL_0291
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
Trypan blue dye-exclusion assay; Annexin V-FITC apoptosis assay; Flow cytometer
Mechanism Description Both miR 302a and si IGF 1R inhibited Akt signaling. MiR 302a targeted IGF 1R and enhanced 5 FU induced cell death and viability inhibition in human colon cancer cells.
Disease Class: Colorectal cancer [7]
Sensitive Disease Colorectal cancer [ICD-11: 2B91.1]
Sensitive Drug Fluorouracil
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell migration Inhibition hsa04670
Cell proliferation Inhibition hsa05200
MEK/ERK signaling pathway Inhibition hsa04011
PI3K/AKT signaling pathway Inhibition hsa04151
In Vitro Model SW480 cells Colon Homo sapiens (Human) CVCL_0546
SW620 cells Colon Homo sapiens (Human) CVCL_0547
HCT116 cells Colon Homo sapiens (Human) CVCL_0291
LOVO cells Colon Homo sapiens (Human) CVCL_0399
COLO 205 cells Colon Homo sapiens (Human) CVCL_0218
HCT28 cells Colon Homo sapiens (Human) N.A.
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
MTS assay
Mechanism Description IGF1-R has an important role in mediating activation of the PI3k/Akt pathway, miR-497 inhibits PI3k/Akt signalling. Down-regulation of miR-497 is an important mechanism of upregulation of IGF1-R in CRC cells that contributes to malignancy of CRC.
Gefitinib
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Lung adenocarcinoma [12]
Sensitive Disease Lung adenocarcinoma [ICD-11: 2C25.0]
Sensitive Drug Gefitinib
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell invasion Inhibition hsa05200
Cell migration Inhibition hsa04670
Cell proliferation Inhibition hsa05200
EGFR signaling pathway Inhibition hsa01521
In Vitro Model H1975 cells Lung Homo sapiens (Human) CVCL_1511
A549 cells Lung Homo sapiens (Human) CVCL_0023
H1299 cells Lung Homo sapiens (Human) CVCL_0060
HCC827 cells Lung Homo sapiens (Human) CVCL_2063
16HBE cells Lung Homo sapiens (Human) CVCL_0112
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
MTT assay; EdU assay
Mechanism Description GAS5 was significantly downregulated in lung adenocarcinoma tissues compared with the paired adjacent non-tumorous tissue samples. Furthermore, lower GAS5 expression levels were associated with larger tumor sizes, poor tumor differentiation, and advanced pathological stages. However, GAS5 was almost equally expressed between benign tumors compared with the adjacent normal tissues. GAS5 was also overexpressed in EGFR-TkI sensitive cell lines compared with the resistant cell line. Using MTT, EdU incorporation, and colony formation assays, we showed that GAS5-expressing A549 cells displayed an elevated level of cell death. In addition to its pro-apoptotic effect in the A549 cell line, GAS5 overexpression also suppressed the growth of A549-derived tumors in nude mice treated with gefitinib. GAS5 overexpression was inversely correlated with the expression of the EGFR pathway and IGF-1R proteins.
Disease Class: Lung adenocarcinoma [12]
Sensitive Disease Lung adenocarcinoma [ICD-11: 2C25.0]
Sensitive Drug Gefitinib
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell invasion Inhibition hsa05200
Cell migration Inhibition hsa04670
Cell proliferation Inhibition hsa05200
EGFR signaling pathway Inhibition hsa01521
In Vitro Model H1975 cells Lung Homo sapiens (Human) CVCL_1511
A549 cells Lung Homo sapiens (Human) CVCL_0023
H1299 cells Lung Homo sapiens (Human) CVCL_0060
HCC827 cells Lung Homo sapiens (Human) CVCL_2063
16HBE cells Lung Homo sapiens (Human) CVCL_0112
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
MTT assay; EdU assay
Mechanism Description GAS5 was significantly downregulated in lung adenocarcinoma tissues compared with the paired adjacent non-tumorous tissue samples. Furthermore, lower GAS5 expression levels were associated with larger tumor sizes, poor tumor differentiation, and advanced pathological stages. However, GAS5 was almost equally expressed between benign tumors compared with the adjacent normal tissues. GAS5 was also overexpressed in EGFR-TkI sensitive cell lines compared with the resistant cell line. Using MTT, EdU incorporation, and colony formation assays, we showed that GAS5-expressing A549 cells displayed an elevated level of cell death. In addition to its pro-apoptotic effect in the A549 cell line, GAS5 overexpression also suppressed the growth of A549-derived tumors in nude mice treated with gefitinib. GAS5 overexpression was inversely correlated with the expression of the EGFR pathway and IGF-1R proteins.
Gemcitabine
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Non-small cell lung cancer [2]
Resistant Disease Non-small cell lung cancer [ICD-11: 2C25.Y]
Resistant Drug Gemcitabine
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell proliferation Activation hsa05200
IGF1R/AKT/PI3K signaling pathway Activation hsa05224
In Vitro Model A549 cells Lung Homo sapiens (Human) CVCL_0023
H1299 cells Lung Homo sapiens (Human) CVCL_0060
NCI-H358 cells Lung Homo sapiens (Human) CVCL_1559
NCI-H292 cells Lung Homo sapiens (Human) CVCL_0455
NCI-H460 cells Lung Homo sapiens (Human) CVCL_0459
NCI-H838 cells Lung Homo sapiens (Human) CVCL_1594
Experiment for
Molecule Alteration
Western blot analysis; RT-qPCR
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description Long non-coding RNA EGFR-AS1 Can enhance IGF1R expression by suppressing miR-223 expression to promotes gemcitabine resistance in the non-small cell lung cancer.
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Bladder cancer [13]
Sensitive Disease Bladder cancer [ICD-11: 2C94.0]
Sensitive Drug Gemcitabine
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell proliferation Inhibition hsa05200
IGF1R signaling pathway Inhibition hsa05200
MAPK sigaling pathway Inhibition hsahsa04
PI3K/AKT signaling pathway Inhibition hsa04151
In Vitro Model 5637 cells Bladder Homo sapiens (Human) CVCL_0126
SV-HUC-1 cells Bladder Homo sapiens (Human) CVCL_3798
T24 cells Bladder Homo sapiens (Human) CVCL_0554
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description miR143 inhibits bladder cancer cell proliferation and enhances their sensitivity to gemcitabine by repressing IGF-1R signaling. Down-regulation of miR143 in bladder cancer may be involved in tumor development via the activation of IGF-1R and other downstream pathways like PI3k/Akt and MAPk.
Imatinib
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Gastrointestinal stromal tumor [14]
Resistant Disease Gastrointestinal stromal tumor [ICD-11: 2B5B.0]
Resistant Drug Imatinib
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
In Vitro Model GIST-T1 cells Gastric Homo sapiens (Human) CVCL_4976
GIST882 cells Gastric Homo sapiens (Human) CVCL_7044
Experiment for
Molecule Alteration
Western blot analysis; RT-qPCR
Experiment for
Drug Resistance
CCK8 assay; Flow cytometry assay
Mechanism Description Down-regulation of LncRNA CCDC26 contributes to imatinib resistance in human gastrointestinal stromal tumors through IGF-1R upregulation.
Lapatinib
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Breast cancer [1]
Sensitive Disease Breast cancer [ICD-11: 2C60.3]
Sensitive Drug Lapatinib
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell invasion Inhibition hsa05200
Cell migration Inhibition hsa04670
In Vitro Model SkBR3 cells Breast Homo sapiens (Human) CVCL_0033
HCC1954 cells Breast Homo sapiens (Human) CVCL_1259
Experiment for
Molecule Alteration
qPCR
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description Introducing miR-630 into cells with innate- or acquired- resistance to HER-drugs significantly restored the efficacy of lapatinib, neratinib and afatinib; through a mechanism that at least partly, involve miR-630's regulation of IGF1R. Blocking miR-630 induced resistance/insensitivity to these drugs. Cellular motility, invasion, and anoikis were also observed as significantly altered by miR-630 manipulation, whereby introducing miR-630 into cells reduced cellular aggression while inhibition of miR-630 induced a more aggressive cellular phenotype.
Neratinib
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Breast cancer [1]
Sensitive Disease Breast cancer [ICD-11: 2C60.3]
Sensitive Drug Neratinib
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell invasion Inhibition hsa05200
Cell migration Inhibition hsa04670
In Vitro Model SkBR3 cells Breast Homo sapiens (Human) CVCL_0033
HCC1954 cells Breast Homo sapiens (Human) CVCL_1259
Experiment for
Molecule Alteration
qPCR
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description Introducing miR-630 into cells with innate- or acquired- resistance to HER-drugs significantly restored the efficacy of lapatinib, neratinib and afatinib; through a mechanism that at least partly, involve miR-630's regulation of IGF1R. Blocking miR-630 induced resistance/insensitivity to these drugs. Cellular motility, invasion, and anoikis were also observed as significantly altered by miR-630 manipulation, whereby introducing miR-630 into cells reduced cellular aggression while inhibition of miR-630 induced a more aggressive cellular phenotype.
Oxaliplatin
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Colorectal cancer [15]
Sensitive Disease Colorectal cancer [ICD-11: 2B91.1]
Sensitive Drug Oxaliplatin
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell migration Activation hsa04670
Cell proliferation Inhibition hsa05200
PI3K/AKT/HIF-1/VEGF signaling pathway Activation hsa04151
In Vitro Model SW1116 cells Colon Homo sapiens (Human) CVCL_0544
In Vivo Model BALB/c nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description Overexpression of miR-143 inhibited cell proliferation, migration, tumor growth and angiogenesis and increased chemosensitivity to oxaliplatin treatment in an IGF-IR-dependent manner.
Paclitaxel
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Hepatocellular carcinoma [9]
Sensitive Disease Hepatocellular carcinoma [ICD-11: 2C12.2]
Sensitive Drug Paclitaxel
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation IGF1/IGF1R signaling pathway Inhibition hsa05200
In Vitro Model Huh-7 cells Liver Homo sapiens (Human) CVCL_0336
HepG2 cells Liver Homo sapiens (Human) CVCL_0027
Experiment for
Molecule Alteration
Dual luciferase assay; Western blot analysis
Experiment for
Drug Resistance
Propidium Iodide (PI) Staining
Mechanism Description IGF1 is a hub gene in HCC and is involved in the p53 signaling pathway regulation. miR379 can sensitize HCC cells to chemotherapeutic reagents via targeting IGF1R and suppressing its expression, and suppressing the IGF1/IGF1R signaling pathway.
Sorafenib
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Hepatocellular carcinoma [16]
Sensitive Disease Hepatocellular carcinoma [ICD-11: 2C12.2]
Sensitive Drug Sorafenib
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell proliferation Inhibition hsa05200
RAS/RAF/ERK signaling pathway Inhibition hsa04010
In Vitro Model Huh-7 cells Liver Homo sapiens (Human) CVCL_0336
T1115 cells Liver Homo sapiens (Human) N.A.
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description Overexpression of miR-122 made drug-tolerant cells sensitive to sorafenib and induced apoptosis. Insulin-like growth factor 1 receptor (IGF-1R) was validated as a target of miR-122 and was repressed by this miRNA. miR-122-induced apoptosis was repressed by the IGF-1R activator IGFI or IGFII. Conversely, the IGF-1R inhibitor PPP or NVP-AEW541 in combination with sorafenib significantly induced cell apoptosis and disrupted tolerance to drugs in vitro. These results indicated that activation of IGF-1R by ectopic down-regulation of miR-122 counteracted the effects of sorafenib-induced apoptosis, thus conferring sorafenib resistance.
Disease Class: Hepatocellular carcinoma [17]
Sensitive Disease Hepatocellular carcinoma [ICD-11: 2C12.2]
Sensitive Drug Sorafenib
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
In Vitro Model HepG2 cells Liver Homo sapiens (Human) CVCL_0027
Hep3B cells Liver Homo sapiens (Human) CVCL_0326
Skhep1 cells Liver Homo sapiens (Human) CVCL_0525
In Vivo Model Nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
MTS assay
Mechanism Description ADAM10 (a distintegrin and metalloprotease family), serum response factor (SRF), and insulin-like growth factor 1 receptor (Igf1R) that promote tumorigenesis were validated as targets of miR-122 and were repressed by the microRNA. Ectopic expression of miR-122 in nonexpressing HepG2, Hep3B, and Sk-Hep-1 cells reversed their tumorigenic properties such as growth, replication potential, clonogenic survival, anchorage-independent growth, migration, invasion, and tumor formation in nude mice.
Trastuzumab
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: HER2 positive breast cancer [18]
Resistant Disease HER2 positive breast cancer [ICD-11: 2C60.8]
Resistant Drug Trastuzumab
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
PI3K/AKT signaling pathway Activation hsa04151
In Vitro Model SkBR3 cells Breast Homo sapiens (Human) CVCL_0033
In Vivo Model BALB/c nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
Luciferase reporter assay
Experiment for
Drug Resistance
MTT assay
Mechanism Description Insulin-like growth factor-1 receptor (IGF1R) is thought to play a key role in the acquisition of cancer resistance to trastuzumab and other targeted pharmaceuticals. Epigenetic silencing of miR-375 causes the upregulation of IGF1R, which at least partially underlies trastuzumab resistance of breast cancer cells.
Vemurafenib
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Melanoma [19]
Sensitive Disease Melanoma [ICD-11: 2C30.0]
Sensitive Drug Vemurafenib
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell proliferation Inhibition hsa05200
MAPK/PI3K/AKT signaling pathway Inhibition hsa05235
In Vitro Model A375 cells Skin Homo sapiens (Human) CVCL_0132
Mel-CV cells Skin Homo sapiens (Human) CVCL_S996
Experiment for
Molecule Alteration
Immunohistochemical staining assay; Western blot analysis
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description miR-7 expression was decreased in both VemR A375 and Mel-CVR melanoma cells and its low expression contributed to BRAFi resistance. Furthermore, by decreasing the expression levels of EGFR, IGF-1R and CRAF, miR-7 could inhibit the activation of RAS/RAF/MEk/ERk (MAPk) and PI3k/AkT pathway and partially reverse the resistance to BRAFi in VemR A375 melanoma cells.
Disease- and Tissue-specific Abundances of This Molecule
ICD Disease Classification 02
Click to Show/Hide the Resistance Disease of This Class
Gastric cancer [ICD-11: 2B72]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Gastric tissue
The Specified Disease Gastric cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 1.17E-01; Fold-change: -3.85E-01; Z-score: -1.47E+00
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 5.97E-01; Fold-change: 9.77E-02; Z-score: 2.28E-01
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Colon cancer [ICD-11: 2B90]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Colon
The Specified Disease Colon cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 5.32E-03; Fold-change: -1.34E-01; Z-score: -2.42E-01
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 8.29E-19; Fold-change: 6.42E-01; Z-score: 1.05E+00
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Liver cancer [ICD-11: 2C12]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Liver
The Specified Disease Liver cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 3.82E-02; Fold-change: -1.94E-01; Z-score: -7.99E-01
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 3.53E-05; Fold-change: -5.55E-02; Z-score: -1.77E-01
The Expression Level of Disease Section Compare with the Other Disease Section p-value: 4.92E-01; Fold-change: -1.58E-01; Z-score: -5.27E-01
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Molecule expression in tissue other than the diseased tissue of patients
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Lung cancer [ICD-11: 2C25]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Lung
The Specified Disease Lung cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 6.95E-04; Fold-change: 1.11E-01; Z-score: 1.90E-01
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 6.14E-01; Fold-change: -9.02E-02; Z-score: -1.18E-01
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Melanoma [ICD-11: 2C30]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Skin
The Specified Disease Melanoma
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 4.57E-03; Fold-change: 1.09E+00; Z-score: 9.52E-01
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Breast cancer [ICD-11: 2C60]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Breast tissue
The Specified Disease Breast cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 9.93E-08; Fold-change: 5.39E-01; Z-score: 5.74E-01
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 2.31E-03; Fold-change: 5.00E-01; Z-score: 4.50E-01
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Ovarian cancer [ICD-11: 2C73]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Ovary
The Specified Disease Ovarian cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 7.03E-03; Fold-change: -7.50E-01; Z-score: -1.36E+00
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 4.86E-03; Fold-change: 4.80E-01; Z-score: 1.20E+00
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Bladder cancer [ICD-11: 2C94]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Bladder tissue
The Specified Disease Bladder cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 1.52E-07; Fold-change: -1.19E+00; Z-score: -4.56E+00
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Tissue-specific Molecule Abundances in Healthy Individuals
Click to Show/Hide the Molecule Abundances
References
Ref 1 miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer. Mol Cancer. 2014 Mar 24;13:71. doi: 10.1186/1476-4598-13-71.
Ref 2 Overexpression of lncRNA EGFR AS1 is associated with a poor prognosis and promotes chemotherapy resistance in non small cell lung cancer. Int J Oncol. 2019 Jan;54(1):295-305. doi: 10.3892/ijo.2018.4629. Epub 2018 Nov 9.
Ref 3 MiR-30a-5p confers cisplatin resistance by regulating IGF1R expression in melanoma cells. BMC Cancer. 2018 Apr 11;18(1):404. doi: 10.1186/s12885-018-4233-9.
Ref 4 MiR-1294 confers cisplatin resistance in ovarian Cancer cells by targeting IGF1R. Biomed Pharmacother. 2018 Oct;106:1357-1363. doi: 10.1016/j.biopha.2018.07.059. Epub 2018 Jul 23.
Ref 5 miR-1271 regulates cisplatin resistance of human gastric cancer cell lines by targeting IGF1R, IRS1, mTOR, and BCL2. Anticancer Agents Med Chem. 2014;14(6):884-91. doi: 10.2174/1871520614666140528161318.
Ref 6 MiR-503 regulates cisplatin resistance of human gastric cancer cell lines by targeting IGF1R and BCL2. Chin Med J (Engl). 2014;127(12):2357-62.
Ref 7 MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer. Oncogene. 2013 Apr 11;32(15):1910-20. doi: 10.1038/onc.2012.214. Epub 2012 Jun 18.
Ref 8 Down-regulation of miRNA-452 is associated with adriamycin-resistance in breast cancer cells. Asian Pac J Cancer Prev. 2014;15(13):5137-42. doi: 10.7314/apjcp.2014.15.13.5137.
Ref 9 Bioinformatic identification of IGF1 as a hub gene in hepatocellular carcinoma (HCC) and in-vitro analysis of the chemosensitizing effect of miR-379 via suppressing the IGF1/IGF1R signaling pathway. Eur Rev Med Pharmacol Sci. 2016 Dec;20(24):5098-5106.
Ref 10 miR-223 enhances the sensitivity of non-small cell lung cancer cells to erlotinib by targeting the insulin-like growth factor-1 receptor. Int J Mol Med. 2016 Jul;38(1):183-91. doi: 10.3892/ijmm.2016.2588. Epub 2016 May 13.
Ref 11 MicroRNA-302a enhances 5-fluorouracil-induced cell death in human colon cancer cells. Oncol Rep. 2017 Jan;37(1):631-639. doi: 10.3892/or.2016.5237. Epub 2016 Nov 8.
Ref 12 The long non-coding RNA, GAS5, enhances gefitinib-induced cell death in innate EGFR tyrosine kinase inhibitor-resistant lung adenocarcinoma cells with wide-type EGFR via downregulation of the IGF-1R expression. J Hematol Oncol. 2015 Apr 29;8:43. doi: 10.1186/s13045-015-0140-6.
Ref 13 miR-143 inhibits bladder cancer cell proliferation and enhances their sensitivity to gemcitabine by repressing IGF-1R signaling. Oncol Lett. 2017 Jan;13(1):435-440. doi: 10.3892/ol.2016.5388. Epub 2016 Nov 16.
Ref 14 Downregulation of lncRNA CCDC26 contributes to imatinib resistance in human gastrointestinal stromal tumors through IGF-1R upregulation. Braz J Med Biol Res. 2019;52(6):e8399. doi: 10.1590/1414-431x20198399. Epub 2019 Jun 3.
Ref 15 MicroRNA-143 inhibits tumor growth and angiogenesis and sensitizes chemosensitivity to oxaliplatin in colorectal cancers. Cell Cycle. 2013 May 1;12(9):1385-94. doi: 10.4161/cc.24477. Epub 2013 Apr 8.
Ref 16 MicroRNA-122 confers sorafenib resistance to hepatocellular carcinoma cells by targeting IGF-1R to regulate RAS/RAF/ERK signaling pathways. Cancer Lett. 2016 Feb 28;371(2):171-81. doi: 10.1016/j.canlet.2015.11.034. Epub 2015 Dec 3.
Ref 17 MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem. 2009 Nov 13;284(46):32015-27. doi: 10.1074/jbc.M109.016774. Epub 2009 Sep 2.
Ref 18 Epigenetic silencing of miR-375 induces trastuzumab resistance in HER2-positive breast cancer by targeting IGF1R. BMC Cancer. 2014 Feb 26;14:134. doi: 10.1186/1471-2407-14-134.
Ref 19 miR-7 reverses the resistance to BRAFi in melanoma by targeting EGFR/IGF-1R/CRAF and inhibiting the MAPK and PI3K/AKT signaling pathways. Oncotarget. 2016 Aug 16;7(33):53558-53570. doi: 10.18632/oncotarget.10669.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.