Molecule Information
General Information of the Molecule (ID: Mol04150)
| Name |
Phosphoserine aminotransferase 1 (PSAT1)
,Homo sapiens
|
||||
|---|---|---|---|---|---|
| Synonyms |
Phosphohydroxythreonine aminotransferase
Click to Show/Hide
|
||||
| Molecule Type |
Protein
|
||||
| Gene Name |
PSAT1
|
||||
| Gene ID | |||||
| Location |
chr9:78297125-78330093[+]
|
||||
| Sequence |
MDAPRQVVNFGPGPAKLPHSVLLEIQKELLDYKGVGISVLEMSHRSSDFAKIINNTENLV
RELLAVPDNYKVIFLQGGGCGQFSAVPLNLIGLKAGRCADYVVTGAWSAKAAEEAKKFGT INIVHPKLGSYTKIPDPSTWNLNPDASYVYYCANETVHGVEFDFIPDVKGAVLVCDMSSN FLSKPVDVSKFGVIFAGAQKNVGSAGVTVVIVRDDLLGFALRECPSVLEYKVQAGNSSLY NTPPCFSIYVMGLVLEWIKNNGGAAAMEKLSSIKSQTIYEIIDNSQGFYVCPVEPQNRSK MNIPFRIGNAKGDDALEKRFLDKALELNMLSLKGHRSVGGIRASLYNAVTIEDVQKLAAF MKKFLEMHQL Click to Show/Hide
|
||||
| 3D-structure |
|
||||
| Function |
Involved in L-serine biosynthesis via the phosphorylated pathway, a three-step pathway converting the glycolytic intermediate 3- phospho-D-glycerate into L-serine. Catalyzes the second step, that is the pyridoxal 5'-phosphate-dependent transamination of 3- phosphohydroxypyruvate and L-glutamate to O-phosphoserine (OPS) and alpha-ketoglutarate. .
Click to Show/Hide
|
||||
| Uniprot ID | |||||
| Ensembl ID | |||||
| HGNC ID | |||||
| Click to Show/Hide the Complete Species Lineage | |||||
Type(s) of Resistant Mechanism of This Molecule
Drug Resistance Data Categorized by Drug
Approved Drug(s)
1 drug(s) in total
| Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
|
|
||||
| Disease Class: Renal cell carcinoma [ICD-11: 2C90.0] | [1] | |||
| Metabolic Type | Amino acid metabolism | |||
| Resistant Disease | Renal cell carcinoma [ICD-11: 2C90.0] | |||
| Resistant Drug | Sunitinib | |||
| Molecule Alteration | Expression | Up-regulation |
||
| Experimental Note | Revealed Based on the Cell Line Data | |||
| In Vivo Model | 4-week-old malenude mice, SN12 | Mice | ||
| Experiment for Molecule Alteration |
qRT-PCR; Western blot analysis | |||
| Mechanism Description | Our results showed that PSAT1 exhibited lower expression in tumor tissue compared to adjacent normal tissue, but its expression level increased with advancing stages and grades of ccRCC. Patients with elevated expression level of PSAT1 exhibited an unfavorable prognosis. Functional experiments have substantiated that the depletion of PSAT1 shows an effective activity in inhibiting the proliferation, migration and invasion of ccRCC cells, concurrently promoting apoptosis. RNA sequencing analysis has revealed that the attenuation of PSAT1 can diminish tumor resistance to therapeutic drugs. Furthermore, the xenograft model has indicated that the inhibition of PSAT1 can obviously impact the tumorigenic potential of ccRCC and mitigate lung metastasis. Notably, pharmacological targeting PSAT1 by Aminooxyacetic Acid (AOA) or knockdown of PSAT5 increased the susceptibility of sunitinib-resistant cells. | |||
| Disease Class: Renal cell carcinoma [ICD-11: 2C90.0] | [1] | |||
| Metabolic Type | Amino acid metabolism | |||
| Resistant Disease | Renal cell carcinoma [ICD-11: 2C90.0] | |||
| Resistant Drug | Sunitinib | |||
| Molecule Alteration | Expression | Up-regulation |
||
| Experimental Note | Revealed Based on the Cell Line Data | |||
| In Vitro Model | 786-O cells | Kidney | Homo sapiens (Human) | CVCL_1051 |
| Experiment for Molecule Alteration |
qRT-PCR; Western blot analysis | |||
| Experiment for Drug Resistance |
CCK8 assay | |||
| Mechanism Description | Our results showed that PSAT1 exhibited lower expression in tumor tissue compared to adjacent normal tissue, but its expression level increased with advancing stages and grades of ccRCC. Patients with elevated expression level of PSAT1 exhibited an unfavorable prognosis. Functional experiments have substantiated that the depletion of PSAT1 shows an effective activity in inhibiting the proliferation, migration and invasion of ccRCC cells, concurrently promoting apoptosis. RNA sequencing analysis has revealed that the attenuation of PSAT1 can diminish tumor resistance to therapeutic drugs. Furthermore, the xenograft model has indicated that the inhibition of PSAT1 can obviously impact the tumorigenic potential of ccRCC and mitigate lung metastasis. Notably, pharmacological targeting PSAT1 by Aminooxyacetic Acid (AOA) or knockdown of PSAT1 increased the susceptibility of sunitinib-resistant cells. | |||
| Disease Class: Renal cell carcinoma [ICD-11: 2C90.0] | [1] | |||
| Metabolic Type | Amino acid metabolism | |||
| Resistant Disease | Renal cell carcinoma [ICD-11: 2C90.0] | |||
| Resistant Drug | Sunitinib | |||
| Molecule Alteration | Expression | Up-regulation |
||
| Experimental Note | Revealed Based on the Cell Line Data | |||
| In Vitro Model | A-498 cells | Kidney | Homo sapiens (Human) | CVCL_1056 |
| Experiment for Molecule Alteration |
qRT-PCR; Western blot analysis | |||
| Experiment for Drug Resistance |
CCK8 assay | |||
| Mechanism Description | Our results showed that PSAT1 exhibited lower expression in tumor tissue compared to adjacent normal tissue, but its expression level increased with advancing stages and grades of ccRCC. Patients with elevated expression level of PSAT1 exhibited an unfavorable prognosis. Functional experiments have substantiated that the depletion of PSAT1 shows an effective activity in inhibiting the proliferation, migration and invasion of ccRCC cells, concurrently promoting apoptosis. RNA sequencing analysis has revealed that the attenuation of PSAT1 can diminish tumor resistance to therapeutic drugs. Furthermore, the xenograft model has indicated that the inhibition of PSAT1 can obviously impact the tumorigenic potential of ccRCC and mitigate lung metastasis. Notably, pharmacological targeting PSAT1 by Aminooxyacetic Acid (AOA) or knockdown of PSAT2 increased the susceptibility of sunitinib-resistant cells. | |||
| Disease Class: Renal cell carcinoma [ICD-11: 2C90.0] | [1] | |||
| Metabolic Type | Amino acid metabolism | |||
| Resistant Disease | Renal cell carcinoma [ICD-11: 2C90.0] | |||
| Resistant Drug | Sunitinib | |||
| Molecule Alteration | Expression | Up-regulation |
||
| Experimental Note | Revealed Based on the Cell Line Data | |||
| In Vitro Model | SN12-PM6 cells | N.A. | Homo sapiens (Human) | CVCL_9549 |
| Experiment for Molecule Alteration |
qRT-PCR; Western blot analysis | |||
| Experiment for Drug Resistance |
CCK8 assay | |||
| Mechanism Description | Our results showed that PSAT1 exhibited lower expression in tumor tissue compared to adjacent normal tissue, but its expression level increased with advancing stages and grades of ccRCC. Patients with elevated expression level of PSAT1 exhibited an unfavorable prognosis. Functional experiments have substantiated that the depletion of PSAT1 shows an effective activity in inhibiting the proliferation, migration and invasion of ccRCC cells, concurrently promoting apoptosis. RNA sequencing analysis has revealed that the attenuation of PSAT1 can diminish tumor resistance to therapeutic drugs. Furthermore, the xenograft model has indicated that the inhibition of PSAT1 can obviously impact the tumorigenic potential of ccRCC and mitigate lung metastasis. Notably, pharmacological targeting PSAT1 by Aminooxyacetic Acid (AOA) or knockdown of PSAT3 increased the susceptibility of sunitinib-resistant cells. | |||
| Disease Class: Renal cell carcinoma [ICD-11: 2C90.0] | [1] | |||
| Metabolic Type | Amino acid metabolism | |||
| Resistant Disease | Renal cell carcinoma [ICD-11: 2C90.0] | |||
| Resistant Drug | Sunitinib | |||
| Molecule Alteration | Expression | Up-regulation |
||
| Experimental Note | Revealed Based on the Cell Line Data | |||
| In Vitro Model | 293 T cells | Blood | Homo sapiens (Human) | N.A. |
| Experiment for Molecule Alteration |
qRT-PCR; Western blot analysis | |||
| Experiment for Drug Resistance |
CCK8 assay | |||
| Mechanism Description | Our results showed that PSAT1 exhibited lower expression in tumor tissue compared to adjacent normal tissue, but its expression level increased with advancing stages and grades of ccRCC. Patients with elevated expression level of PSAT1 exhibited an unfavorable prognosis. Functional experiments have substantiated that the depletion of PSAT1 shows an effective activity in inhibiting the proliferation, migration and invasion of ccRCC cells, concurrently promoting apoptosis. RNA sequencing analysis has revealed that the attenuation of PSAT1 can diminish tumor resistance to therapeutic drugs. Furthermore, the xenograft model has indicated that the inhibition of PSAT1 can obviously impact the tumorigenic potential of ccRCC and mitigate lung metastasis. Notably, pharmacological targeting PSAT1 by Aminooxyacetic Acid (AOA) or knockdown of PSAT4 increased the susceptibility of sunitinib-resistant cells. | |||
References
If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Yu.
