Molecule Information
General Information of the Molecule (ID: Mol01513)
Name |
hsa-mir-520g
,Homo sapiens
|
||||
---|---|---|---|---|---|
Synonyms |
microRNA 520g
Click to Show/Hide
|
||||
Molecule Type |
Precursor miRNA
|
||||
Gene Name |
MIR520G
|
||||
Gene ID | |||||
Location |
chr19:53722166-53722255[+]
|
||||
Sequence |
UCCCAUGCUGUGACCCUCUAGAGGAAGCACUUUCUGUUUGUUGUCUGAGAAAAAACAAAG
UGCUUCCCUUUAGAGUGUUACCGUUUGGGA Click to Show/Hide
|
||||
Ensembl ID | |||||
HGNC ID | |||||
Precursor Accession | |||||
Click to Show/Hide the Complete Species Lineage | |||||
Type(s) of Resistant Mechanism of This Molecule
EADR: Epigenetic Alteration of DNA, RNA or Protein
Drug Resistance Data Categorized by Drug
Approved Drug(s)
4 drug(s) in total
Cisplatin
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Epithelial ovarian cancer | [1] | |||
Resistant Disease | Epithelial ovarian cancer [ICD-11: 2B5D.0] | |||
Resistant Drug | Cisplatin | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell invasion | Activation | hsa05200 | |
Cell proliferation | Activation | hsa05200 | ||
MAPK/AKT signaling pathway | Regulation | hsa04010 | ||
In Vitro Model | SkOV3 cells | Ovary | Homo sapiens (Human) | CVCL_0532 |
A2780 cells | Ovary | Homo sapiens (Human) | CVCL_0134 | |
CAOV3 cells | Ovary | Homo sapiens (Human) | CVCL_0201 | |
OVCA433 cells | Ovary | Homo sapiens (Human) | CVCL_0475 | |
OV2008 cells | Ovary | Homo sapiens (Human) | CVCL_0473 | |
ES-2 cells | Ovary | Homo sapiens (Human) | CVCL_3509 | |
MCAS cells | Ovary | Homo sapiens (Human) | CVCL_3020 | |
OVk18 cells | Ovary | Homo sapiens (Human) | CVCL_3770 | |
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | miR-520g expression is significantly increased in EOC and high miR-520g expression promotes tumor development, increases chemoresistance to platinum-based chemotherapy and reduces patient survival. miR-520g directly targets and downregulates DAPk2 by binding the DAPk2 3'UTR. DAPk2 suppression, followed by MAPk and AkT pathway activation, promotes the biological processes mediated by miR-520g in EOC. |
Fluorouracil
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Colorectal cancer | [2] | |||
Resistant Disease | Colorectal cancer [ICD-11: 2B91.1] | |||
Resistant Drug | Fluorouracil | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Identified from the Human Clinical Data | |||
Cell Pathway Regulation | Cell apoptosis | Inhibition | hsa04210 | |
p53/miR520g/p21 signaling pathway | Regulation | hsa05206 | ||
In Vitro Model | HCT116 cells | Colon | Homo sapiens (Human) | CVCL_0291 |
RkO cells | Colon | Homo sapiens (Human) | CVCL_0504 | |
FET cells | Colon | Homo sapiens (Human) | CVCL_A604 | |
GEO cells | Colon | Homo sapiens (Human) | CVCL_0271 | |
Experiment for Molecule Alteration |
qPCR | |||
Experiment for Drug Resistance |
MTT assay; ELISA assay | |||
Mechanism Description | p53 suppresses miR-520g expression and that deletion of p53 up-regulates miR-520g expression. Inhibition of miR-520g in p53 / cells increased their sensitivity to 5-FU treatment. miR-520g conferred resistance to 5-FU-induced apoptosis through the inhibition of p21 expression, which is a direct target of miR-520g. Rescued expression of p21 in miR-520g-expressing colon cancer cells sensitized them to 5-FU-induced apoptosis. Importantly, experiments in tumor xenograft mouse models demonstrate that miR-520g reduced the effectiveness of 5-FU in the inhibition of tumor growth in vivo. Moreover, studies of colorectal cancer specimens indicate a positive correlation between miR-520g expression and chemoresistance. |
Oxaliplatin
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Colorectal cancer | [2] | |||
Resistant Disease | Colorectal cancer [ICD-11: 2B91.1] | |||
Resistant Drug | Oxaliplatin | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Identified from the Human Clinical Data | |||
Cell Pathway Regulation | Cell apoptosis | Inhibition | hsa04210 | |
p53/miR520g/p21 signaling pathway | Regulation | hsa05206 | ||
In Vitro Model | HCT116 cells | Colon | Homo sapiens (Human) | CVCL_0291 |
RkO cells | Colon | Homo sapiens (Human) | CVCL_0504 | |
FET cells | Colon | Homo sapiens (Human) | CVCL_A604 | |
GEO cells | Colon | Homo sapiens (Human) | CVCL_0271 | |
Experiment for Molecule Alteration |
qPCR | |||
Experiment for Drug Resistance |
MTT assay; ELISA assay | |||
Mechanism Description | p53 suppresses miR-520g expression and that deletion of p53 up-regulates miR-520g expression. Inhibition of miR-520g in p53 / cells increased their sensitivity to 5-FU treatment. miR-520g conferred resistance to 5-FU-induced apoptosis through the inhibition of p21 expression, which is a direct target of miR-520g. Rescued expression of p21 in miR-520g-expressing colon cancer cells sensitized them to 5-FU-induced apoptosis. Importantly, experiments in tumor xenograft mouse models demonstrate that miR-520g reduced the effectiveness of 5-FU in the inhibition of tumor growth in vivo. Moreover, studies of colorectal cancer specimens indicate a positive correlation between miR-520g expression and chemoresistance. |
Paclitaxel
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Epithelial ovarian cancer | [1] | |||
Resistant Disease | Epithelial ovarian cancer [ICD-11: 2B5D.0] | |||
Resistant Drug | Paclitaxel | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell invasion | Activation | hsa05200 | |
Cell proliferation | Activation | hsa05200 | ||
MAPK/AKT signaling pathway | Regulation | hsa04010 | ||
In Vitro Model | SkOV3 cells | Ovary | Homo sapiens (Human) | CVCL_0532 |
A2780 cells | Ovary | Homo sapiens (Human) | CVCL_0134 | |
CAOV3 cells | Ovary | Homo sapiens (Human) | CVCL_0201 | |
OVCA433 cells | Ovary | Homo sapiens (Human) | CVCL_0475 | |
OV2008 cells | Ovary | Homo sapiens (Human) | CVCL_0473 | |
ES-2 cells | Ovary | Homo sapiens (Human) | CVCL_3509 | |
MCAS cells | Ovary | Homo sapiens (Human) | CVCL_3020 | |
OVk18 cells | Ovary | Homo sapiens (Human) | CVCL_3770 | |
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | miR-520g expression is significantly increased in EOC and high miR-520g expression promotes tumor development, increases chemoresistance to platinum-based chemotherapy and reduces patient survival. miR-520g directly targets and downregulates DAPk2 by binding the DAPk2 3'UTR. DAPk2 suppression, followed by MAPk and AkT pathway activation, promotes the biological processes mediated by miR-520g in EOC. |
References
If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.