Molecule Information
General Information of the Molecule (ID: Mol01725)
Name |
hsa-miR-508-5p
,Homo sapiens
|
||||
---|---|---|---|---|---|
Synonyms |
microRNA 508
Click to Show/Hide
|
||||
Molecule Type |
Mature miRNA
|
||||
Sequence |
UACUCCAGAGGGCGUCACUCAUG
Click to Show/Hide
|
||||
Ensembl ID | |||||
HGNC ID | |||||
Mature Accession | |||||
Click to Show/Hide the Complete Species Lineage | |||||
Type(s) of Resistant Mechanism of This Molecule
EADR: Epigenetic Alteration of DNA, RNA or Protein
Drug Resistance Data Categorized by Drug
Approved Drug(s)
4 drug(s) in total
Cisplatin
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Gastric cancer | [1] | |||
Sensitive Disease | Gastric cancer [ICD-11: 2B72.1] | |||
Sensitive Drug | Cisplatin | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Inhibition | hsa04210 | |
In Vitro Model | SGC7901 cells | Gastric | Homo sapiens (Human) | CVCL_0520 |
SGC7901/VCR cells | Gastric | Homo sapiens (Human) | CVCL_VU58 | |
SGC7901/ADR cells | Gastric | Homo sapiens (Human) | CVCL_VU57 | |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | The overexpression of miR-508-5p was sufficient to reverse cancer cell resistance to multiple chemotherapeutics in vitro and sensitize tumours to chemotherapy in vivo. Further studies showed that miR-508-5p could directly target the 3'-untranslated regions of ABCB1 and Zinc ribbon domain-containing 1 (ZNRD1), and suppress their expression at the mRNA and protein levels. Meanwhile, the suppression of ZNRD1 led to a decrease in ABCB1. |
Doxorubicin
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Gastric cancer | [1] | |||
Sensitive Disease | Gastric cancer [ICD-11: 2B72.1] | |||
Sensitive Drug | Doxorubicin | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Inhibition | hsa04210 | |
In Vitro Model | SGC7901 cells | Gastric | Homo sapiens (Human) | CVCL_0520 |
SGC7901/VCR cells | Gastric | Homo sapiens (Human) | CVCL_VU58 | |
SGC7901/ADR cells | Gastric | Homo sapiens (Human) | CVCL_VU57 | |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | The overexpression of miR-508-5p was sufficient to reverse cancer cell resistance to multiple chemotherapeutics in vitro and sensitize tumours to chemotherapy in vivo. Further studies showed that miR-508-5p could directly target the 3'-untranslated regions of ABCB1 and Zinc ribbon domain-containing 1 (ZNRD1), and suppress their expression at the mRNA and protein levels. Meanwhile, the suppression of ZNRD1 led to a decrease in ABCB1. |
Fluorouracil
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Gastric cancer | [1] | |||
Sensitive Disease | Gastric cancer [ICD-11: 2B72.1] | |||
Sensitive Drug | Fluorouracil | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Inhibition | hsa04210 | |
In Vitro Model | SGC7901 cells | Gastric | Homo sapiens (Human) | CVCL_0520 |
SGC7901/VCR cells | Gastric | Homo sapiens (Human) | CVCL_VU58 | |
SGC7901/ADR cells | Gastric | Homo sapiens (Human) | CVCL_VU57 | |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | The overexpression of miR-508-5p was sufficient to reverse cancer cell resistance to multiple chemotherapeutics in vitro and sensitize tumours to chemotherapy in vivo. Further studies showed that miR-508-5p could directly target the 3'-untranslated regions of ABCB1 and Zinc ribbon domain-containing 1 (ZNRD1), and suppress their expression at the mRNA and protein levels. Meanwhile, the suppression of ZNRD1 led to a decrease in ABCB1. |
Vincristine
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Gastric cancer | [1] | |||
Sensitive Disease | Gastric cancer [ICD-11: 2B72.1] | |||
Sensitive Drug | Vincristine | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Inhibition | hsa04210 | |
In Vitro Model | SGC7901 cells | Gastric | Homo sapiens (Human) | CVCL_0520 |
SGC7901/VCR cells | Gastric | Homo sapiens (Human) | CVCL_VU58 | |
SGC7901/ADR cells | Gastric | Homo sapiens (Human) | CVCL_VU57 | |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | The overexpression of miR-508-5p was sufficient to reverse cancer cell resistance to multiple chemotherapeutics in vitro and sensitize tumours to chemotherapy in vivo. Further studies showed that miR-508-5p could directly target the 3'-untranslated regions of ABCB1 and Zinc ribbon domain-containing 1 (ZNRD1), and suppress their expression at the mRNA and protein levels. Meanwhile, the suppression of ZNRD1 led to a decrease in ABCB1. |
References
If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.