Molecule Information
General Information of the Molecule (ID: Mol01594)
Name |
hsa-miR-27b-3p
,Homo sapiens
|
||||
---|---|---|---|---|---|
Synonyms |
microRNA 27b
Click to Show/Hide
|
||||
Molecule Type |
Mature miRNA
|
||||
Sequence |
UUCACAGUGGCUAAGUUCUGC
Click to Show/Hide
|
||||
Ensembl ID | |||||
HGNC ID | |||||
Mature Accession | |||||
Click to Show/Hide the Complete Species Lineage | |||||
Type(s) of Resistant Mechanism of This Molecule
EADR: Epigenetic Alteration of DNA, RNA or Protein
Drug Resistance Data Categorized by Drug
Approved Drug(s)
3 drug(s) in total
Doxorubicin
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Anaplastic thyroid carcinoma | [1] | |||
Sensitive Disease | Anaplastic thyroid carcinoma [ICD-11: 2D10.3] | |||
Sensitive Drug | Doxorubicin | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell proliferation | Inhibition | hsa05200 | |
Cell viability | Inhibition | hsa05200 | ||
miR27b-3p/PPARgamma signaling pathway | Regulation | hsa05206 | ||
In Vitro Model | 8305C cells | Thyroid | Homo sapiens (Human) | CVCL_1053 |
SW1736 cells | Thyroid | Homo sapiens (Human) | CVCL_3883 | |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | The inhibitor of miR-27b-3p can increase the Dox sensitivity of ATC Dox-resistant cells while over-expression of PPARGamma also increased the Dox sensitivity of ATC-resistant cells. |
Paclitaxel
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Breast cancer | [2] | |||
Sensitive Disease | Breast cancer [ICD-11: 2C60.3] | |||
Sensitive Drug | Paclitaxel | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Identified from the Human Clinical Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell viability | Inhibition | hsa05200 | ||
MAPK/ERK signaling pathway | Inhibition | hsa04010 | ||
PI3K/AKT signaling pathway | Inhibition | hsa04151 | ||
In Vitro Model | BCap37 cells | Breast | Homo sapiens (Human) | CVCL_0164 |
Bads-200 cells | Breast | Homo sapiens (Human) | N.A. | |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
MTT assay; Flow cytometry assay | |||
Mechanism Description | miR-27b inhibits proliferation and resistance to PTX of breast cancer cell by repressing CBLB and GRB2 and suppresses activities of PI3k/AkT and MAPk/ERk signaling pathways through downregulation of CBLB and GRB2. |
Tamoxifen
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Breast cancer | [3] | |||
Resistant Disease | Breast cancer [ICD-11: 2C60.3] | |||
Resistant Drug | Tamoxifen | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
In Vitro Model | MCF-7 cells | Breast | Homo sapiens (Human) | CVCL_0031 |
SkBR3 cells | Breast | Homo sapiens (Human) | CVCL_0033 | |
MDA-MB-231 cells | Breast | Homo sapiens (Human) | CVCL_0062 | |
T47D cells | Breast | Homo sapiens (Human) | CVCL_0553 | |
BT549 cells | Breast | Homo sapiens (Human) | CVCL_1092 | |
MCF10A cells | Breast | Homo sapiens (Human) | CVCL_0598 | |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
MTT assay; Annexin V-FITC (fluorescein isothiocyanate)/PI analysis | |||
Mechanism Description | Down-regulation of microRNA-27b-3p enhances tamoxifen resistance in breast cancer by increasing NR5A2 and CREB1 expression. Overexpression of NR5A2 and CREB1 reverses reduction of cell viability and induction of apoptosis by miR27b-3p mimics, and depletion of NR5A2 and CREB1 reverses induction of cell viability and reduction of apoptosis by miR509-5p inhibitors in tamoxifen-treated cells. |
References
If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.