Molecule Information
General Information of the Molecule (ID: Mol01593)
Name |
hsa-miR-23b-3p
,Homo sapiens
|
||||
---|---|---|---|---|---|
Synonyms |
microRNA 23b
Click to Show/Hide
|
||||
Molecule Type |
Mature miRNA
|
||||
Sequence |
AUCACAUUGCCAGGGAUUACCAC
Click to Show/Hide
|
||||
Ensembl ID | |||||
HGNC ID | |||||
Mature Accession | |||||
Click to Show/Hide the Complete Species Lineage | |||||
Type(s) of Resistant Mechanism of This Molecule
EADR: Epigenetic Alteration of DNA, RNA or Protein
Drug Resistance Data Categorized by Drug
Approved Drug(s)
3 drug(s) in total
Cisplatin
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Gastric cancer | [1] | |||
Resistant Disease | Gastric cancer [ICD-11: 2B72.1] | |||
Resistant Drug | Cisplatin | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | SGC7901 cells | Gastric | Homo sapiens (Human) | CVCL_0520 |
BGC823 cells | Gastric | Homo sapiens (Human) | CVCL_3360 | |
Experiment for Molecule Alteration |
RT-PCR; Luciferase reporter assay; Pull down assay | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | MALAT1 acts as a competing endogenous RNA for miR23b-3p and attenuates the inhibitory effect of miR23b-3p on ATG12, leading to chemo-induced autophagy and chemoresistance in GC cells. MALAT1 promotes autophagy-associated chemoresistance of GC cells via sequestration of miR23b-3p. |
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Gastric cancer | [2] | |||
Sensitive Disease | Gastric cancer [ICD-11: 2B72.1] | |||
Sensitive Drug | Cisplatin | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | miR23b-3p/ATG12/HMGB2/autophagy regulatory loop signaling pathway | Regulation | hsa05206 | |
In Vitro Model | SGC7901 cells | Gastric | Homo sapiens (Human) | CVCL_0520 |
BGC823 cells | Gastric | Homo sapiens (Human) | CVCL_3360 | |
AGS cells | Gastric | Homo sapiens (Human) | CVCL_0139 | |
In Vivo Model | SCID-SHO mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | ATG12 and HMGB2 were the direct targets of miR-23b-3p. Meanwhile, ATG12 and HMGB2 were positively associated with the occurrence of autophagy. Reducing the expression of these target genes by siRNA or inhibition of autophagy both sensitized GC cells to chemotherapy. These findings suggest that a miR-23b-3p/ATG12/HMGB2/autophagy-regulatory loop has a critical role in MDR in GC. In addition, miR-23b-3p could be used as a prognostic factor for overall survival in GC. miR-23b-3p inhibited autophagy mediated by ATG12 and HMGB2 and sensitized GC cells to chemotherapy, and suggested the potential application of miR-23b-3p in drug resistance prediction and treatment. |
Fluorouracil
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Gastric cancer | [1] | |||
Resistant Disease | Gastric cancer [ICD-11: 2B72.1] | |||
Resistant Drug | Fluorouracil | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | SGC7901 cells | Gastric | Homo sapiens (Human) | CVCL_0520 |
BGC823 cells | Gastric | Homo sapiens (Human) | CVCL_3360 | |
Experiment for Molecule Alteration |
RT-PCR; Luciferase reporter assay; Pull down assay | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | MALAT1 acts as a competing endogenous RNA for miR23b-3p and attenuates the inhibitory effect of miR23b-3p on ATG12, leading to chemo-induced autophagy and chemoresistance in GC cells. MALAT1 promotes autophagy-associated chemoresistance of GC cells via sequestration of miR23b-3p. |
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Gastric cancer | [2] | |||
Sensitive Disease | Gastric cancer [ICD-11: 2B72.1] | |||
Sensitive Drug | Fluorouracil | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | miR23b-3p/ATG12/HMGB2/autophagy regulatory loop signaling pathway | Regulation | hsa05206 | |
In Vitro Model | SGC7901 cells | Gastric | Homo sapiens (Human) | CVCL_0520 |
BGC823 cells | Gastric | Homo sapiens (Human) | CVCL_3360 | |
AGS cells | Gastric | Homo sapiens (Human) | CVCL_0139 | |
In Vivo Model | SCID-SHO mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | ATG12 and HMGB2 were the direct targets of miR-23b-3p. Meanwhile, ATG12 and HMGB2 were positively associated with the occurrence of autophagy. Reducing the expression of these target genes by siRNA or inhibition of autophagy both sensitized GC cells to chemotherapy. These findings suggest that a miR-23b-3p/ATG12/HMGB2/autophagy-regulatory loop has a critical role in MDR in GC. In addition, miR-23b-3p could be used as a prognostic factor for overall survival in GC. miR-23b-3p inhibited autophagy mediated by ATG12 and HMGB2 and sensitized GC cells to chemotherapy, and suggested the potential application of miR-23b-3p in drug resistance prediction and treatment. |
Vincristine
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Gastric cancer | [1] | |||
Sensitive Disease | Gastric cancer [ICD-11: 2B72.1] | |||
Sensitive Drug | Vincristine | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | SGC7901 cells | Gastric | Homo sapiens (Human) | CVCL_0520 |
BGC823 cells | Gastric | Homo sapiens (Human) | CVCL_3360 | |
Experiment for Molecule Alteration |
RT-PCR; Luciferase reporter assay; Pull down assay | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | MALAT1 acts as a competing endogenous RNA for miR23b-3p and attenuates the inhibitory effect of miR23b-3p on ATG12, leading to chemo-induced autophagy and chemoresistance in GC cells. MALAT1 promotes autophagy-associated chemoresistance of GC cells via sequestration of miR23b-3p. | |||
Disease Class: Gastric cancer | [2] | |||
Sensitive Disease | Gastric cancer [ICD-11: 2B72.1] | |||
Sensitive Drug | Vincristine | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | miR23b-3p/ATG12/HMGB2/autophagy regulatory loop signaling pathway | Regulation | hsa05206 | |
In Vitro Model | SGC7901 cells | Gastric | Homo sapiens (Human) | CVCL_0520 |
BGC823 cells | Gastric | Homo sapiens (Human) | CVCL_3360 | |
AGS cells | Gastric | Homo sapiens (Human) | CVCL_0139 | |
In Vivo Model | SCID-SHO mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | ATG12 and HMGB2 were the direct targets of miR-23b-3p. Meanwhile, ATG12 and HMGB2 were positively associated with the occurrence of autophagy. Reducing the expression of these target genes by siRNA or inhibition of autophagy both sensitized GC cells to chemotherapy. These findings suggest that a miR-23b-3p/ATG12/HMGB2/autophagy-regulatory loop has a critical role in MDR in GC. In addition, miR-23b-3p could be used as a prognostic factor for overall survival in GC. miR-23b-3p inhibited autophagy mediated by ATG12 and HMGB2 and sensitized GC cells to chemotherapy, and suggested the potential application of miR-23b-3p in drug resistance prediction and treatment. |
References
If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.