Molecule Information
General Information of the Molecule (ID: Mol01395)
Name |
hsa-mir-211
,Homo sapiens
|
||||
---|---|---|---|---|---|
Synonyms |
microRNA 211
Click to Show/Hide
|
||||
Molecule Type |
Precursor miRNA
|
||||
Gene Name |
MIR211
|
||||
Gene ID | |||||
Location |
chr15:31065032-31065141[-]
|
||||
Sequence |
UCACCUGGCCAUGUGACUUGUGGGCUUCCCUUUGUCAUCCUUCGCCUAGGGCUCUGAGCA
GGGCAGGGACAGCAAAGGGGUGCUCAGUUGUCACUUCCCACAGCACGGAG Click to Show/Hide
|
||||
Ensembl ID | |||||
HGNC ID | |||||
Precursor Accession | |||||
Click to Show/Hide the Complete Species Lineage | |||||
Type(s) of Resistant Mechanism of This Molecule
EADR: Epigenetic Alteration of DNA, RNA or Protein
RTDM: Regulation by the Disease Microenvironment
Drug Resistance Data Categorized by Drug
Approved Drug(s)
3 drug(s) in total
Cisplatin
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Melanoma | [1] | |||
Resistant Disease | Melanoma [ICD-11: 2C30.0] | |||
Resistant Drug | Cisplatin | |||
Molecule Alteration | Methylation | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell viability | Activation | hsa05200 | |
In Vitro Model | A375 cells | Skin | Homo sapiens (Human) | CVCL_0132 |
Sk-Mel28 cells | Skin | Homo sapiens (Human) | CVCL_0526 | |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | Overexpressed 211 could enhance the anticancer effect of cisplatin and restoration of miR-211 rendered susceptibility to cisplatin in cisplatin-resistant cells.miR-211 could be transcriptionally repressed by EZH2 mediated promoter methylation. |
Fluorouracil
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Regulation by the Disease Microenvironment (RTDM) | ||||
Disease Class: Breast cancer | [2] | |||
Sensitive Disease | Breast cancer [ICD-11: 2C60.3] | |||
Sensitive Drug | Fluorouracil | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Epithelial mesenchymal transition signaling pathway | Inhibition | hsa01521 | |
In Vitro Model | MCF-7 cells | Breast | Homo sapiens (Human) | CVCL_0031 |
MDA-MB-231 cells | Breast | Homo sapiens (Human) | CVCL_0062 | |
T47D cells | Breast | Homo sapiens (Human) | CVCL_0553 | |
ZR75-1 cells | Breast | Homo sapiens (Human) | CVCL_0588 | |
MCF10A cells | Breast | Homo sapiens (Human) | CVCL_0598 | |
In Vivo Model | Mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
Transwell migration assay | |||
Mechanism Description | NEAT1 promoted invasion through inducing Epithelial-mesenchymal transition (EMT), NEAT1 down-regulation inhibited cell motility and invasion by reversing the EMT phenotype and increased breast cancer cells chemo-sensitivity. There may be a reciprocal repression between miR211 and NEAT1. |
Gemcitabine
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Pancreatic cancer | [3] | |||
Sensitive Disease | Pancreatic cancer [ICD-11: 2C10.3] | |||
Sensitive Drug | Gemcitabine | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell invasion | Inhibition | hsa05200 | |
Cell migration | Inhibition | hsa04670 | ||
In Vitro Model | Suit2 cells | Pancreas | Homo sapiens (Human) | CVCL_3172 |
SUIT2-007 cells | Pancreas | Homo sapiens (Human) | CVCL_B279 | |
SUIT2-028 cells | Pancreas | Homo sapiens (Human) | CVCL_B282 | |
In Vivo Model | Nude mouse xenograft model | Mus musculus | ||
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
CCK8 assay; Transwell assay | |||
Mechanism Description | The induction of the miR-211 expression in the cells increased the sensitivity to gemcitabine and reduced the expression of its target ribonucleotide reductase subunit 2 (RRM2). |
References
If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.