General Information of the Molecule (ID: Mol01394)
Name
hsa-mir-210 ,Homo sapiens
Synonyms
microRNA 210
    Click to Show/Hide
Molecule Type
Precursor miRNA
Gene Name
MIR210
Gene ID
406992
Location
chr11:568089-568198[-]
Sequence
ACCCGGCAGUGCCUCCAGGCGCAGGGCAGCCCCUGCCCACCGCACACUGCGCUGCCCCAG
ACCCACUGUGCGUGUGACAGCGGCUGAUCUGUGCCUGGGCAGCGCGACCC
    Click to Show/Hide
Ensembl ID
ENSG00000199038
HGNC ID
HGNC:31587
Precursor Accession
MI0000286
        Click to Show/Hide the Complete Species Lineage
Kingdom: Metazoa
Phylum: Chordata
Class: Mammalia
Order: Primates
Family: Hominidae
Genus: Homo
Species: Homo sapiens
Type(s) of Resistant Mechanism of This Molecule
  EADR: Epigenetic Alteration of DNA, RNA or Protein
Drug Resistance Data Categorized by Drug
Approved Drug(s)
7 drug(s) in total
Click to Show/Hide the Full List of Drugs
Daunorubicin
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Paediatric acute lymphocytic leukemia [1]
Sensitive Disease Paediatric acute lymphocytic leukemia [ICD-11: 2B33.4]
Sensitive Drug Daunorubicin
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell proliferation Inhibition hsa05200
In Vitro Model MLL/AF4+ RS4 cells Blood Homo sapiens (Human) CVCL_0093
TEL/AML1+ Reh cells Blood Homo sapiens (Human) CVCL_ZV66
In Vivo Model Nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
RT-PCR
Experiment for
Drug Resistance
CellTiter 96 aqueous one solution cell proliferation assay
Mechanism Description Functioning as a hypoxamir (i.e. a microRNA whose expression is upregulated by hypoxia), miR-210 targets many genes involved in a wide range of physiological processes, such as cell survival/proliferation, mitochondrial metabolism, protein modification/transport, DNA damage repair and angiogenesis. Increasing/decreasing miR-210 expression using agomir/antagomir could enhance or reduce the response of Reh cells and RS4;11 cells to daunorubicin/dexamethasone/L-asparaginase and daunorubicin/dexamethasone/vincristine, respectively. miR-210 may be a good prognostic factor and a useful predictor of drug sensitivity, and is a potential therapeutic target for pediatric ALL.
Dexamethasone
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Paediatric acute lymphocytic leukemia [1]
Sensitive Disease Paediatric acute lymphocytic leukemia [ICD-11: 2B33.4]
Sensitive Drug Dexamethasone
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell proliferation Inhibition hsa05200
In Vitro Model MLL/AF4+ RS4 cells Blood Homo sapiens (Human) CVCL_0093
TEL/AML1+ Reh cells Blood Homo sapiens (Human) CVCL_ZV66
In Vivo Model Nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
RT-PCR
Experiment for
Drug Resistance
CellTiter 96 aqueous one solution cell proliferation assay
Mechanism Description Functioning as a hypoxamir (i.e. a microRNA whose expression is upregulated by hypoxia), miR-210 targets many genes involved in a wide range of physiological processes, such as cell survival/proliferation, mitochondrial metabolism, protein modification/transport, DNA damage repair and angiogenesis. Increasing/decreasing miR-210 expression using agomir/antagomir could enhance or reduce the response of Reh cells and RS4;11 cells to daunorubicin/dexamethasone/L-asparaginase and daunorubicin/dexamethasone/vincristine, respectively. miR-210 may be a good prognostic factor and a useful predictor of drug sensitivity, and is a potential therapeutic target for pediatric ALL.
Doxorubicin
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Osteosarcoma [2]
Sensitive Disease Osteosarcoma [ICD-11: 2B51.0]
Sensitive Drug Doxorubicin
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
In Vitro Model MG63 cells Bone marrow Homo sapiens (Human) CVCL_0426
SAOS-2 cells Bone marrow Homo sapiens (Human) CVCL_0548
U2OS cells Bone Homo sapiens (Human) CVCL_0042
In Vivo Model Nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
qRT-PCR; Dual luciferase reporter assay
Experiment for
Drug Resistance
TUNEL Assay; MTT assay; Flow cytometric analysis
Mechanism Description LncRNA CTA-miR210 axis plays an important role in reducing OS chemoresistance. LncRNA CTA could be activated by doxorubicin (DOX), and could promote OS cell apoptosis by competitively binding miR210, while inhibit cell autophagy.
Gemcitabine
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Pancreatic cancer [3]
Sensitive Disease Pancreatic cancer [ICD-11: 2C10.3]
Sensitive Drug Gemcitabine
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
In Vitro Model BxPC-3 cells Pancreas Homo sapiens (Human) CVCL_0186
MIA PaCa-2 cells Pancreas Homo sapiens (Human) CVCL_0428
AsPC-1 cells Pancreas Homo sapiens (Human) CVCL_0152
In Vivo Model Chick egg xenograft model Gallus gallus
Experiment for
Molecule Alteration
qRT-PCR
Experiment for
Drug Resistance
RealTime-Glo MT Cell Viability Assay; Caspase-3/7 substrate assay; Colony formation assay
Mechanism Description microRNA-210 overexpression inhibits tumor growth and potentially reverses gemcitabine resistance in pancreatic cancer, miR210 is a direct suppressor of the multidrug efflux transporter ABCC5.
L-asparaginase
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Paediatric acute lymphocytic leukemia [1]
Sensitive Disease Paediatric acute lymphocytic leukemia [ICD-11: 2B33.4]
Sensitive Drug L-asparaginase
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell proliferation Inhibition hsa05200
In Vitro Model MLL/AF4+ RS4 cells Blood Homo sapiens (Human) CVCL_0093
TEL/AML1+ Reh cells Blood Homo sapiens (Human) CVCL_ZV66
In Vivo Model Nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
RT-PCR
Experiment for
Drug Resistance
CellTiter 96 aqueous one solution cell proliferation assay
Mechanism Description Functioning as a hypoxamir (i.e. a microRNA whose expression is upregulated by hypoxia), miR-210 targets many genes involved in a wide range of physiological processes, such as cell survival/proliferation, mitochondrial metabolism, protein modification/transport, DNA damage repair and angiogenesis. Increasing/decreasing miR-210 expression using agomir/antagomir could enhance or reduce the response of Reh cells and RS4;11 cells to daunorubicin/dexamethasone/L-asparaginase and daunorubicin/dexamethasone/vincristine, respectively. miR-210 may be a good prognostic factor and a useful predictor of drug sensitivity, and is a potential therapeutic target for pediatric ALL.
Trastuzumab
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Breast cancer [4]
Resistant Disease Breast cancer [ICD-11: 2C60.3]
Resistant Drug Trastuzumab
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
In Vitro Model BT474 cells Breast Homo sapiens (Human) CVCL_0179
Experiment for
Molecule Alteration
qRT-PCR
Experiment for
Drug Resistance
Clonogenic assay
Mechanism Description The function of miR-210, which is directly regulated by hypoxia-inducible factor 1-alpha, may also depend on cancer type. miR-210 inhibits apoptosis, bypasses cell-cycle arrest, and promotes cancer cell survival when overexpressed, but when underexpressed, as it is in esophageal squamous cell carcinoma, it represses the initiation of tumor growth by inducing cell death and cell-cycle arrest.
Vincristine
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Paediatric acute lymphocytic leukemia [1]
Sensitive Disease Paediatric acute lymphocytic leukemia [ICD-11: 2B33.4]
Sensitive Drug Vincristine
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell proliferation Inhibition hsa05200
In Vitro Model MLL/AF4+ RS4 cells Blood Homo sapiens (Human) CVCL_0093
TEL/AML1+ Reh cells Blood Homo sapiens (Human) CVCL_ZV66
In Vivo Model Nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
RT-PCR
Experiment for
Drug Resistance
CellTiter 96 aqueous one solution cell proliferation assay
Mechanism Description Functioning as a hypoxamir (i.e. a microRNA whose expression is upregulated by hypoxia), miR-210 targets many genes involved in a wide range of physiological processes, such as cell survival/proliferation, mitochondrial metabolism, protein modification/transport, DNA damage repair and angiogenesis. Increasing/decreasing miR-210 expression using agomir/antagomir could enhance or reduce the response of Reh cells and RS4;11 cells to daunorubicin/dexamethasone/L-asparaginase and daunorubicin/dexamethasone/vincristine, respectively. miR-210 may be a good prognostic factor and a useful predictor of drug sensitivity, and is a potential therapeutic target for pediatric ALL.
References
Ref 1 Effect of microRNA-210 on prognosis and response to chemotherapeutic drugs in pediatric acute lymphoblastic leukemia. Cancer Sci. 2014 Apr;105(4):463-72. doi: 10.1111/cas.12370. Epub 2014 Mar 30.
Ref 2 Long non-coding RNA CTA sensitizes osteosarcoma cells to doxorubicin through inhibition of autophagy. Oncotarget. 2017 May 9;8(19):31465-31477. doi: 10.18632/oncotarget.16356.
Ref 3 microRNA-210 overexpression inhibits tumor growth and potentially reverses gemcitabine resistance in pancreatic cancer. Cancer Lett. 2017 Mar 1;388:107-117. doi: 10.1016/j.canlet.2016.11.035. Epub 2016 Dec 7.
Ref 4 Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer. 2012 May 15;118(10):2603-14. doi: 10.1002/cncr.26565. Epub 2011 Oct 5.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.