Molecule Information
General Information of the Molecule (ID: Mol01379)
Name |
hsa-mir-10a
,Homo sapiens
|
||||
---|---|---|---|---|---|
Synonyms |
microRNA 10a
Click to Show/Hide
|
||||
Molecule Type |
Precursor miRNA
|
||||
Gene Name |
MIR10A
|
||||
Gene ID | |||||
Location |
chr17:48579838-48579947[-]
|
||||
Sequence |
GAUCUGUCUGUCUUCUGUAUAUACCCUGUAGAUCCGAAUUUGUGUAAGGAAUUUUGUGGU
CACAAAUUCGUAUCUAGGGGAAUAUGUAGUUGACAUAAACACUCCGCUCU Click to Show/Hide
|
||||
Ensembl ID | |||||
HGNC ID | |||||
Precursor Accession | |||||
Click to Show/Hide the Complete Species Lineage | |||||
Type(s) of Resistant Mechanism of This Molecule
EADR: Epigenetic Alteration of DNA, RNA or Protein
RTDM: Regulation by the Disease Microenvironment
Drug Resistance Data Categorized by Drug
Approved Drug(s)
3 drug(s) in total
Cisplatin
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Lung cancer | [1] | |||
Resistant Disease | Lung cancer [ICD-11: 2C25.5] | |||
Resistant Drug | Cisplatin | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Inhibition | hsa04210 | |
Cell invasion | Activation | hsa05200 | ||
Cell migration | Activation | hsa04670 | ||
Cell proliferation | Activation | hsa05200 | ||
TGF-beta/Smad2/STAT3/STAT5 signaling pathway | Activation | hsa04350 | ||
In Vitro Model | A549 cells | Lung | Homo sapiens (Human) | CVCL_0023 |
Experiment for Molecule Alteration |
qPCR | |||
Experiment for Drug Resistance |
MTS assay; Flow cytometry assay | |||
Mechanism Description | miR-10a had an important role in promoting drug resistance in tumors through enhancing drug efflux and inhibiting apoptosis via upregulation of MDR1, MRP1 and RhoE expression. In addition, miR-10a promoted the expression of TGF-beta as wells as regulated the activity of the Smad2/STAT3/STAT5 pathway and its downstream transcriptional factors of HIF and eIF4E, which may be the potential mechanism of drug resistance in A549 cells. Therefore, miR-10a may be an important drug target for improving cancer treatment; however, further studies are required to explore the clinical applications of miR-10a inhibitors. |
Gemcitabine
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Regulation by the Disease Microenvironment (RTDM) | ||||
Disease Class: Pancreatic cancer | [2] | |||
Resistant Disease | Pancreatic cancer [ICD-11: 2C10.3] | |||
Resistant Drug | Gemcitabine | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | MIA PaCa-2 cells | Pancreas | Homo sapiens (Human) | CVCL_0428 |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | Pancreatic cancers relapse due to small but distinct population of cancer stem cells (CSCs) which are in turn regulated by miRNAs. Those miRNA were either upregulated (e.g. miR-146) or downregulated (e.g. miRNA-205, miRNA-7) in gemcitabine resistant MIA PaCa-2 cancer cells and clinical metastatic pancreatic cancer tissues. |
Temozolomide
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Glioblastoma | [3] | |||
Resistant Disease | Glioblastoma [ICD-11: 2A00.02] | |||
Resistant Drug | Temozolomide | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell viability | Inhibition | hsa05200 | ||
In Vitro Model | U87 cells | Brain | Homo sapiens (Human) | CVCL_0022 |
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
CCK8 assay; Flow cytometry assay | |||
Mechanism Description | Upregulation of TUSC7,which acted by directly targeting and silencing expression of miR-10a gene, suppressed both TMZ resistance and expression of multidrug resistance protein 1 (MDR1) in U87TR cells,, and miR-10a mediated TUSC7-induced inhibition on TMZ resistance in U87TR cells. |
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Glioblastoma | [4] | |||
Sensitive Disease | Glioblastoma [ICD-11: 2A00.02] | |||
Sensitive Drug | Temozolomide | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Identified from the Human Clinical Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell proliferation | Inhibition | hsa05200 | ||
TGF-beta signaling pathway | Regulation | hsa04350 | ||
In Vitro Model | U251 cells | Brain | Homo sapiens (Human) | CVCL_0021 |
U87 cells | Brain | Homo sapiens (Human) | CVCL_0022 | |
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
CCK8 assay; Flow cytometry assay | |||
Mechanism Description | LncRNA RP11-838N2.4 (+) TMZ sensitivity in GBM by serving as a ceRNA, sequestering with miR-10a on an epigenetic level. |
References
If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.