Molecule Information
General Information of the Molecule (ID: Mol01357)
Name |
hsa-mir-93
,Homo sapiens
|
||||
---|---|---|---|---|---|
Synonyms |
microRNA 93
Click to Show/Hide
|
||||
Molecule Type |
Precursor miRNA
|
||||
Gene Name |
MIR93
|
||||
Gene ID | |||||
Location |
chr7:100093768-100093847[-]
|
||||
Sequence |
CUGGGGGCUCCAAAGUGCUGUUCGUGCAGGUAGUGUGAUUACCCAACCUACUGCUGAGCU
AGCACUUCCCGAGCCCCCGG Click to Show/Hide
|
||||
Ensembl ID | |||||
HGNC ID | |||||
Precursor Accession | |||||
Click to Show/Hide the Complete Species Lineage | |||||
Type(s) of Resistant Mechanism of This Molecule
EADR: Epigenetic Alteration of DNA, RNA or Protein
RTDM: Regulation by the Disease Microenvironment
Drug Resistance Data Categorized by Drug
Approved Drug(s)
4 drug(s) in total
Bromocriptine
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Prolactin-secreting adenoma | [1] | |||
Resistant Disease | Prolactin-secreting adenoma [ICD-11: 2F37.Y] | |||
Resistant Drug | Bromocriptine | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Identified from the Human Clinical Data | |||
In Vitro Model | C4-2 cells | Prostate | Homo sapiens (Human) | CVCL_4782 |
KHM-5M cells | Pleural effusion | Homo sapiens (Human) | CVCL_2975 | |
Experiment for Drug Resistance |
Clinical diagnostic evaluation | |||
Mechanism Description | Hsa-mir-93, hsa-mir-17, hsa-mir-22*, hsa-mir-126*, hsa-mir-142-3p, hsa-mir-144*, hsa-mir-486-5p, hsa-mir-451, and hsa-mir-92a were up-regulated and hsa-mir-30a, hsa-mir-382, and hsa-mir-136 were down-regulated in bromocriptine-resistant prolactinomas in comparison with bromocriptine-sensitive prolactinomas. |
Cabergoline
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Prolactin-secreting adenoma | [1] | |||
Resistant Disease | Prolactin-secreting adenoma [ICD-11: 2F37.Y] | |||
Resistant Drug | Cabergoline | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Identified from the Human Clinical Data | |||
Cell Pathway Regulation | Cell proliferation | Activation | hsa05200 | |
In Vitro Model | C4-2 cells | Prostate | Homo sapiens (Human) | CVCL_4782 |
Experiment for Molecule Alteration |
Solexa sequencing assay; qRT-PCR | |||
Experiment for Drug Resistance |
CCK-8 assay | |||
Mechanism Description | Overexpression of mir-93 increased resistance to bromocriptine and cabergoline treatment. |
Cisplatin
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Ovarian cancer | [2] | |||
Resistant Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Resistant Drug | Cisplatin | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Identified from the Human Clinical Data | |||
Cell Pathway Regulation | PTEN/AKT signaling pathway | Activation | hsa05235 | |
In Vitro Model | SkOV3 cells | Ovary | Homo sapiens (Human) | CVCL_0532 |
OVCAR3 cells | Ovary | Homo sapiens (Human) | CVCL_0465 | |
Experiment for Molecule Alteration |
RT-PCR | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | miR-93, a new family member of PTEN regulator, blocks PTEN translation leading to activation of the AkT pathway and played an important role in regulating cisplatin chemosensitivity pathway in ovarian cancer. |
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Epigenetic Alteration of DNA, RNA or Protein (EADR) | ||||
Disease Class: Ovarian cancer | [3] | |||
Sensitive Disease | Ovarian cancer [ICD-11: 2C73.0] | |||
Sensitive Drug | Cisplatin | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Identified from the Human Clinical Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
In Vitro Model | SkOV3 cells | Ovary | Homo sapiens (Human) | CVCL_0532 |
OV2008 cells | Ovary | Homo sapiens (Human) | CVCL_0473 | |
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
MTT assay; Flow cytometry assay | |||
Mechanism Description | There is an elevated expression of DNA polymerase Eta (Pol Eta) in ovarian CSCs isolated from both ovarian cancer cell lines and primary tumors, indicating that CSCs may have intrinsically (+) translesion DNA synthesis (TLS). Down-regulation of Pol Eta blocked cisplatin-induced CSC enrichment both in vitro and in vivo through the enhancement of cisplatin-induced apoptosis in CSCs, indicating that Pol Eta-mediated TLS contributes to the survival of CSCs upon cisplatin treatment. Furthermore, our data demonstrated a depletion of miR-93 in ovarian CSCs. Enforced expression of miR-93 in ovarian CSCs reduced Pol Eta expression and increased their sensitivity to cisplatin. Taken together, our data suggest that ovarian CSCs have intrinsically (+) Pol Eta-mediated TLS, allowing CSCs to survive cisplatin treatment, leading to tumor relapse. Targeting Pol Eta, probably through enhancement of miR-93 expression, might be exploited as a strategy to increase the efficacy of cisplatin treatment. |
Doxorubicin
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Regulation by the Disease Microenvironment (RTDM) | ||||
Disease Class: Breast cancer | [4] | |||
Resistant Disease | Breast cancer [ICD-11: 2C60.3] | |||
Resistant Drug | Doxorubicin | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell motility | Activation | hsa04510 | |
Cell proliferation | Activation | hsa05200 | ||
Self-renewal signaling pathway | Activation | hsa04550 | ||
In Vitro Model | MCF-7 cells | Breast | Homo sapiens (Human) | CVCL_0031 |
MCF-7/ADR cells | Breast | Homo sapiens (Human) | CVCL_1452 | |
Experiment for Molecule Alteration |
qRT-PCR | |||
Experiment for Drug Resistance |
CCK8 assay; Flow cytometric analysis | |||
Mechanism Description | miR93 contributes to inducing EMT and drug resistance of breast cancer cells by targeting PTEN. |
References
If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.