General Information of the Molecule (ID: Mol01350)
Name
hsa-mir-27a ,Homo sapiens
Synonyms
microRNA 27a
    Click to Show/Hide
Molecule Type
Precursor miRNA
Gene Name
MIR27A
Gene ID
407018
Location
chr19:13836440-13836517[-]
Sequence
CUGAGGAGCAGGGCUUAGCUGCUUGUGAGCAGGGUCCACACCAAGUCGUGUUCACAGUGG
CUAAGUUCCGCCCCCCAG
    Click to Show/Hide
Ensembl ID
ENSG00000207808
HGNC ID
HGNC:31613
Precursor Accession
MI0000085
        Click to Show/Hide the Complete Species Lineage
Kingdom: Metazoa
Phylum: Chordata
Class: Mammalia
Order: Primates
Family: Hominidae
Genus: Homo
Species: Homo sapiens
Type(s) of Resistant Mechanism of This Molecule
  EADR: Epigenetic Alteration of DNA, RNA or Protein
  RTDM: Regulation by the Disease Microenvironment
Drug Resistance Data Categorized by Drug
Approved Drug(s)
7 drug(s) in total
Click to Show/Hide the Full List of Drugs
Cisplatin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Ovarian cancer [1]
Resistant Disease Ovarian cancer [ICD-11: 2C73.0]
Resistant Drug Cisplatin
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell invasion Activation hsa05200
Cell migration Activation hsa04670
Cell proliferation Activation hsa05200
In Vitro Model HEY cells Ovary Homo sapiens (Human) CVCL_0297
SkOV3 cells Ovary Homo sapiens (Human) CVCL_0532
Experiment for
Molecule Alteration
qRT-PCR
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description miR-27a acts as an oncogene in ovarian cancer and regulates their proliferation, invasion and chemosensitivity by targeting CUL5.
       Regulation by the Disease Microenvironment (RTDM) Click to Show/Hide
Disease Class: Esophageal cancer [2]
Resistant Disease Esophageal cancer [ICD-11: 2B70.1]
Resistant Drug Cisplatin
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell invasion Activation hsa05200
Cell migration Activation hsa04670
Cell proliferation Activation hsa05200
In Vitro Model TE10 cells Esophagus Homo sapiens (Human) CVCL_1760
In Vivo Model Nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
qRT-PCR
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description miR-27 in serum originated mainly from esophageal cancer cells, because its serum expression level in patients with esophageal cancer was significantly higher than that of healthy volunteers and decreased significantly after surgery compared with the baseline (before surgery). Moreover, co-culture of fibroblasts with anti-miR-27-transfected esophageal cancer cells resulted in a major decrease in the antiapoptotic function of fibroblasts, compared with fibroblasts co-cultured with control esophageal cancer cells that secrete extracellular miR-27. Serum miR-27 level may reflect the expression level of extracellular miR-27 derived from esophageal cancer cells. miR-27 is involved in resistance to chemotherapy in esophageal cancer, through miR-27 -induced transformation of NOF into CAF, and that TGF-beta secreted from these CAF-like fibroblasts induces chemoresistance to cisplatin in esophageal cancer.
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Bladder cancer [3]
Sensitive Disease Bladder cancer [ICD-11: 2C94.0]
Sensitive Drug Cisplatin
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
In Vitro Model EJ/T24 cells Bladder Homo sapiens (Human) N.A.
RT112 cells Bladder Homo sapiens (Human) CVCL_1670
Experiment for
Molecule Alteration
RT-PCR
Experiment for
Drug Resistance
Clonogenic survival assay
Mechanism Description Cisplatin resistance is mediated through increased expression of SLC7A11 and increased production of glutathione, Overexpression of microRNA 27a reduces levels of SLC7A11 and intracellular glutathione, and resensitises resistant cells to cisplatin, SLC7A11 is a key modulator of cisplatin resistance in bladder cancer cells.
Disease Class: Esophageal squamous cell carcinoma [4]
Sensitive Disease Esophageal squamous cell carcinoma [ICD-11: 2B70.3]
Sensitive Drug Cisplatin
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
In Vitro Model ECA-109 cells Esophagus Homo sapiens (Human) CVCL_6898
TE13 cells Esophageal Homo sapiens (Human) CVCL_4463
Experiment for
Molecule Alteration
qRT-PCR; Northern blotting analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description Down-regulation of miR-27a significantly decreased expression of MDR1, but did not alter the expression of MRP, miR-27a could possibly mediate drug resistance, at least in part through regulation of MDR1 and apoptosis.
Docetaxel
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Ovarian cancer [1]
Resistant Disease Ovarian cancer [ICD-11: 2C73.0]
Resistant Drug Docetaxel
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell invasion Activation hsa05200
Cell migration Activation hsa04670
Cell proliferation Activation hsa05200
In Vitro Model HEY cells Ovary Homo sapiens (Human) CVCL_0297
SkOV3 cells Ovary Homo sapiens (Human) CVCL_0532
Experiment for
Molecule Alteration
qRT-PCR
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description miR-27a acts as an oncogene in ovarian cancer and regulates their proliferation, invasion and chemosensitivity by targeting CUL5.
Doxorubicin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Leukemia [5]
Resistant Disease Leukemia [ICD-11: 2B33.6]
Resistant Drug Doxorubicin
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
In Vitro Model K562 cells Blood Homo sapiens (Human) CVCL_0004
Experiment for
Molecule Alteration
qRT-PCR
Experiment for
Drug Resistance
MTT assay
Mechanism Description The expression of miR-331-5p and miR-27a was inversely correlated with MDR1 expression. Transfection of exogenous miR-27a or miR-331-5p, or a combination of these two miRNAs, down-regulated MDR1 and increased sensitivity of the k562-resistant cancer cells to DOX.
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Gastric cancer [6]
Sensitive Disease Gastric cancer [ICD-11: 2B72.1]
Sensitive Drug Doxorubicin
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell proliferation Inhibition hsa05200
Tumorigenesis Inhibition hsa05200
In Vitro Model MkN-45 cells Gastric Homo sapiens (Human) CVCL_0434
In Vivo Model Nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
RT-PCR
Experiment for
Drug Resistance
MTT assay
Mechanism Description Down-regulation of miR-27a could also confer sensitivity of drugs on gastric cancer cells, and might increase accumulation and decrease releasing amount of adriamycin in gastric cancer cells. Down-regulation of miR-27a could significantly decrease the expression of P-glycoprotein and the transcriptional activity of cyclin D1, and up-regulate the expression of p21.
Disease Class: Esophageal squamous cell carcinoma [4]
Sensitive Disease Esophageal squamous cell carcinoma [ICD-11: 2B70.3]
Sensitive Drug Doxorubicin
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
In Vitro Model ECA-109 cells Esophagus Homo sapiens (Human) CVCL_6898
TE13 cells Esophageal Homo sapiens (Human) CVCL_4463
Experiment for
Molecule Alteration
qRT-PCR; Northern blotting analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description Down-regulation of miR-27a significantly decreased expression of MDR1, but did not alter the expression of MRP, miR-27a could possibly mediate drug resistance, at least in part through regulation of MDR1 and apoptosis.
Fluorouracil
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Gastric cancer [6]
Sensitive Disease Gastric cancer [ICD-11: 2B72.1]
Sensitive Drug Fluorouracil
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell proliferation Inhibition hsa05200
Tumorigenesis Inhibition hsa05200
In Vitro Model MkN-45 cells Gastric Homo sapiens (Human) CVCL_0434
In Vivo Model Nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
RT-PCR
Experiment for
Drug Resistance
MTT assay
Mechanism Description Down-regulation of miR-27a could also confer sensitivity of drugs on gastric cancer cells, and might increase accumulation and decrease releasing amount of adriamycin in gastric cancer cells. Down-regulation of miR-27a could significantly decrease the expression of P-glycoprotein and the transcriptional activity of cyclin D1, and up-regulate the expression of p21.
Disease Class: Esophageal squamous cell carcinoma [4]
Sensitive Disease Esophageal squamous cell carcinoma [ICD-11: 2B70.3]
Sensitive Drug Fluorouracil
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
In Vitro Model ECA-109 cells Esophagus Homo sapiens (Human) CVCL_6898
TE13 cells Esophageal Homo sapiens (Human) CVCL_4463
Experiment for
Molecule Alteration
qRT-PCR; Northern blotting analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description Down-regulation of miR-27a significantly decreased expression of MDR1, but did not alter the expression of MRP, miR-27a could possibly mediate drug resistance, at least in part through regulation of MDR1 and apoptosis.
Paclitaxel
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Ovarian cancer [7]
Resistant Disease Ovarian cancer [ICD-11: 2C73.0]
Resistant Drug Paclitaxel
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
miRNAs/HIPk2/MDR1/P-gp signaling pathway Regulation hsa05206
In Vitro Model A2780 cells Ovary Homo sapiens (Human) CVCL_0134
Experiment for
Molecule Alteration
RT-PCR
Experiment for
Drug Resistance
MTT assay
Mechanism Description Transfection of A2780/Taxol cells with the inhibitors of miR-27a decreased the expression of MDR1 mRNA and P-gp protein, increased HIPk2 protein expression, enhanced the sensitivity of A2780/taxol cells to paclitaxel, increased paclitaxel-induced apoptosis and the fluorescence intensity of intracellular Rh-123. The deregulation of miR-27a may be involved in the development of drug resistance, regulating the expression of MDR1/P-gp, at least in part, by targeting HIPk2 in ovarian cancer cells.
Tamoxifen
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Breast cancer [8]
Sensitive Disease Breast cancer [ICD-11: 2C60.3]
Sensitive Drug Tamoxifen
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell viability Inhibition hsa05200
In Vitro Model MCF-7 cells Breast Homo sapiens (Human) CVCL_0031
T47D cells Breast Homo sapiens (Human) CVCL_0553
Experiment for
Molecule Alteration
qRT-PCR
Experiment for
Drug Resistance
ATP-content assay
Mechanism Description miR-27a sensitizes luminal A breast cancer cells to SERM treatments based on a positive feedback loop with ERalpha.
Vincristine
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Gastric cancer [6]
Sensitive Disease Gastric cancer [ICD-11: 2B72.1]
Sensitive Drug Vincristine
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell proliferation Inhibition hsa05200
Tumorigenesis Inhibition hsa05200
In Vitro Model MkN-45 cells Gastric Homo sapiens (Human) CVCL_0434
In Vivo Model Nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
RT-PCR
Experiment for
Drug Resistance
MTT assay
Mechanism Description Down-regulation of miR-27a could also confer sensitivity of drugs on gastric cancer cells, and might increase accumulation and decrease releasing amount of adriamycin in gastric cancer cells. Down-regulation of miR-27a could significantly decrease the expression of P-glycoprotein and the transcriptional activity of cyclin D1, and up-regulate the expression of p21.
Disease Class: Esophageal squamous cell carcinoma [4]
Sensitive Disease Esophageal squamous cell carcinoma [ICD-11: 2B70.3]
Sensitive Drug Vincristine
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
In Vitro Model ECA-109 cells Esophagus Homo sapiens (Human) CVCL_6898
TE13 cells Esophageal Homo sapiens (Human) CVCL_4463
Experiment for
Molecule Alteration
qRT-PCR; Northern blotting analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description Down-regulation of miR-27a significantly decreased expression of MDR1, but did not alter the expression of MRP, miR-27a could possibly mediate drug resistance, at least in part through regulation of MDR1 and apoptosis.
Clinical Trial Drug(s)
1 drug(s) in total
Click to Show/Hide the Full List of Drugs
TRAIL
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Colorectal cancer [9]
Sensitive Disease Colorectal cancer [ICD-11: 2B91.1]
Sensitive Drug TRAIL
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
In Vitro Model HT29 Cells Colon Homo sapiens (Human) CVCL_A8EZ
SW480 cells Colon Homo sapiens (Human) CVCL_0546
FHC cells Colon Homo sapiens (Human) CVCL_3688
Experiment for
Molecule Alteration
qRT-PCR
Experiment for
Drug Resistance
CCK8 assay; Flow cytometric analysis
Mechanism Description Knockdown of miR27a sensitizes colorectal cancer stem cells to TRAIL by promoting the formation of Apaf-1-caspase-9 complex. miR27a antioligonucleotides enhanced the anti-tumor effect of TRAIL on colorectal cancer stem cells via increasing the expression of Apaf-1.
Disease Class: Acute myeloid leukemia [10]
Sensitive Disease Acute myeloid leukemia [ICD-11: 2A60.0]
Sensitive Drug TRAIL
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell proliferation Inhibition hsa05200
In Vitro Model HL60 cells Peripheral blood Homo sapiens (Human) CVCL_0002
K562 cells Blood Homo sapiens (Human) CVCL_0004
K562/A02 cells Blood Homo sapiens (Human) CVCL_0368
NB4 cells Bone marrow Homo sapiens (Human) CVCL_0005
HL-60/ADR cells Blood Homo sapiens (Human) CVCL_0304
In Vivo Model Nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
qRT-PCR
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description miR-424 and miR-27a increase TRAIL sensitivity of acute myeloid leukemia by targeting PLAG1.
References
Ref 1 MicroRNA-27a regulates the proliferation, chemosensitivity and invasion of human ovarian cancer cell lines by targeting Cullin 5. Arch Biochem Biophys. 2019 Jun 15;668:9-15. doi: 10.1016/j.abb.2019.04.009. Epub 2019 Apr 29.
Ref 2 miR-27 is associated with chemoresistance in esophageal cancer through transformation of normal fibroblasts to cancer-associated fibroblasts. Carcinogenesis. 2015 Aug;36(8):894-903. doi: 10.1093/carcin/bgv067. Epub 2015 May 30.
Ref 3 Reduced expression of miRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11. Clin Cancer Res. 2014 Apr 1;20(7):1990-2000. doi: 10.1158/1078-0432.CCR-13-2805. Epub 2014 Feb 10.
Ref 4 Down-regulation of miR-27a might reverse multidrug resistance of esophageal squamous cell carcinoma. Dig Dis Sci. 2010 Sep;55(9):2545-51. doi: 10.1007/s10620-009-1051-6. Epub 2009 Dec 4.
Ref 5 Down-regulated miR-331-5p and miR-27a are associated with chemotherapy resistance and relapse in leukaemia. J Cell Mol Med. 2011 Oct;15(10):2164-75. doi: 10.1111/j.1582-4934.2010.01213.x.
Ref 6 Down-regulation of miR-27a might inhibit proliferation and drug resistance of gastric cancer cells. J Exp Clin Cancer Res. 2011 May 13;30(1):55. doi: 10.1186/1756-9966-30-55.
Ref 7 MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol Oncol. 2010 Oct;119(1):125-30. doi: 10.1016/j.ygyno.2010.06.004. Epub 2010 Jul 10.
Ref 8 MiRNA-27a sensitizes breast cancer cells to treatment with Selective Estrogen Receptor Modulators. Breast. 2019 Feb;43:31-38. doi: 10.1016/j.breast.2018.10.007. Epub 2018 Oct 18.
Ref 9 Knockdown of miR-27a sensitizes colorectal cancer stem cells to TRAIL by promoting the formation of Apaf-1-caspase-9 complex. Oncotarget. 2017 Jul 11;8(28):45213-45223. doi: 10.18632/oncotarget.16779.
Ref 10 MiR-424 and miR-27a increase TRAIL sensitivity of acute myeloid leukemia by targeting PLAG1. Oncotarget. 2016 May 3;7(18):25276-90. doi: 10.18632/oncotarget.8252.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.