General Information of the Molecule (ID: Mol00676)
Name
Tumor necrosis factor ligand superfamily member 13B (TNFSF13B) ,Homo sapiens
Molecule Type
Protein
Gene Name
TNFSF13B
Gene ID
10673
Location
chr13:108251240-108308484[+]
Sequence
MDDSTEREQSRLTSCLKKREEMKLKECVSILPRKESPSVRSSKDGKLLAATLLLALLSCC
LTVVSFYQVAALQGDLASLRAELQGHHAEKLPAGAGAPKAGLEEAPAVTAGLKIFEPPAP
GEGNSSQNSRNKRAVQGPEETVTQDCLQLIADSETPTIQKGSYTFVPWLLSFKRGSALEE
KENKILVKETGYFFIYGQVLYTDKTYAMGHLIQRKKVHVFGDELSLVTLFRCIQNMPETL
PNNSCYSAGIAKLEEGDELQLAIPRENAQISLDGDVTFFGALKLL
    Click to Show/Hide
Function
Cytokine that binds to TNFRSF13B/TACI and TNFRSF17/BCMA. TNFSF13/APRIL binds to the same 2 receptors. Together, they form a 2 ligands -2 receptors pathway involved in the stimulation of B- and T-cell function and the regulation of humoral immunity. A third B-cell specific BAFF-receptor (BAFFR/BR3) promotes the survival of mature B-cells and the B-cell response.
    Click to Show/Hide
Uniprot ID
TN13B_HUMAN
Ensembl ID
ENSG00000102524
HGNC ID
HGNC:11929
        Click to Show/Hide the Complete Species Lineage
Kingdom: Metazoa
Phylum: Chordata
Class: Mammalia
Order: Primates
Family: Hominidae
Genus: Homo
Species: Homo sapiens
Type(s) of Resistant Mechanism of This Molecule
  EADR: Epigenetic Alteration of DNA, RNA or Protein
  UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Drug
Approved Drug(s)
3 drug(s) in total
Click to Show/Hide the Full List of Drugs
Bortezomib
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Epigenetic Alteration of DNA, RNA or Protein (EADR) Click to Show/Hide
Disease Class: Multiple myeloma [1]
Sensitive Disease Multiple myeloma [ICD-11: 2A83.0]
Sensitive Drug Bortezomib
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation JNk/SAPk signaling pathway Activation hsa05161
In Vitro Model U266 cells Bone marrow Homo sapiens (Human) CVCL_0566
Experiment for
Molecule Alteration
RT-PCR
Experiment for
Drug Resistance
WST-1 assay; Annexin V-FLUOS assay
Mechanism Description miR202 contributes to sensitizing MM cells to drug significantly via activing JNk/SAPk signaling pathway. miR202 mimics combined with Bort could inhibit proliferation and induce apoptosis of U266 cells through negative regulating target gene BAFF, which further inhibited the JNk/SAPk signaling pathway.
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Multiple myeloma [2]
Sensitive Disease Multiple myeloma [ICD-11: 2A83.0]
Sensitive Drug Bortezomib
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell invasion Inhibition hsa05200
Cell migration Inhibition hsa04670
Cell proliferation Inhibition hsa05200
JNk/SAPk signaling pathway Regulation hsa05161
In Vitro Model U266 cells Bone marrow Homo sapiens (Human) CVCL_0566
In Vivo Model Nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
WST assay
Mechanism Description miR-202 was functioned as a modulator of BAFF expression. miR-202 over-expression sensitized MM cells to bortezomib (Bort) but less to Thalidomide (Thal) and dexamethasone (Dex). miR-202 mimics in combination with Bort inhibited MM cell survival more effectively as compared with Bort treatment alone. Our study also provided experimental evidence that JNk/SAPk signaling pathway was involved in the regulatory effect of miR-202 on drug resistance of MM cells.
Dexamethasone
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Multiple myeloma [2]
Sensitive Disease Multiple myeloma [ICD-11: 2A83.0]
Sensitive Drug Dexamethasone
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell invasion Inhibition hsa05200
Cell migration Inhibition hsa04670
Cell proliferation Inhibition hsa05200
JNk/SAPk signaling pathway Regulation hsa05161
In Vitro Model U266 cells Bone marrow Homo sapiens (Human) CVCL_0566
In Vivo Model Nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
WST assay
Mechanism Description miR-202 was functioned as a modulator of BAFF expression. miR-202 over-expression sensitized MM cells to bortezomib (Bort) but less to Thalidomide (Thal) and dexamethasone (Dex). miR-202 mimics in combination with Bort inhibited MM cell survival more effectively as compared with Bort treatment alone. Our study also provided experimental evidence that JNk/SAPk signaling pathway was involved in the regulatory effect of miR-202 on drug resistance of MM cells.
Thalidomide
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Multiple myeloma [2]
Sensitive Disease Multiple myeloma [ICD-11: 2A83.0]
Sensitive Drug Thalidomide
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell invasion Inhibition hsa05200
Cell migration Inhibition hsa04670
Cell proliferation Inhibition hsa05200
JNk/SAPk signaling pathway Regulation hsa05161
In Vitro Model U266 cells Bone marrow Homo sapiens (Human) CVCL_0566
In Vivo Model Nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
WST assay
Mechanism Description miR-202 was functioned as a modulator of BAFF expression. miR-202 over-expression sensitized MM cells to bortezomib (Bort) but less to Thalidomide (Thal) and dexamethasone (Dex). miR-202 mimics in combination with Bort inhibited MM cell survival more effectively as compared with Bort treatment alone. Our study also provided experimental evidence that JNk/SAPk signaling pathway was involved in the regulatory effect of miR-202 on drug resistance of MM cells.
Disease- and Tissue-specific Abundances of This Molecule
ICD Disease Classification 02
Click to Show/Hide the Resistance Disease of This Class
Multiple myeloma [ICD-11: 2A83]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Bone marrow
The Specified Disease Multiple myeloma
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 4.51E-01; Fold-change: 4.48E-02; Z-score: 8.54E-02
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
The Studied Tissue Peripheral blood
The Specified Disease Multiple myeloma
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 8.67E-01; Fold-change: 7.39E-02; Z-score: 1.76E-01
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
References
Ref 1 [miR-202 contributes to sensitizing MM cells to drug significantly via activing JNK/SAPK signaling pathway]. Zhonghua Xue Ye Xue Za Zhi. 2016 Nov 14;37(11):987-992. doi: 10.3760/cma.j.issn.0253-2727.2016.11.012.
Ref 2 Study on the Association Between miRNA-202 Expression and Drug Sensitivity in Multiple Myeloma Cells. Pathol Oncol Res. 2016 Jul;22(3):531-9. doi: 10.1007/s12253-015-0035-4. Epub 2015 Dec 21.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.