General Information of the Molecule (ID: Mol00670)
Name
TGF-beta receptor type I (TGFBR1) ,Homo sapiens
Synonyms
TGFR-1; Activin A receptor type II-like protein kinase of 53kD; Activin receptor-like kinase 5; ALK-5; ALK5; Serine/threonine-protein kinase receptor R4; SKR4; TGF-beta type I receptor; Transforming growth factor-beta receptor type I; TGF-beta receptor type I; TbetaR-I; ALK5; SKR4
    Click to Show/Hide
Molecule Type
Protein
Gene Name
TGFBR1
Gene ID
7046
Location
chr9:99104038-99154192[+]
Sequence
MEAAVAAPRPRLLLLVLAAAAAAAAALLPGATALQCFCHLCTKDNFTCVTDGLCFVSVTE
TTDKVIHNSMCIAEIDLIPRDRPFVCAPSSKTGSVTTTYCCNQDHCNKIELPTTVKSSPG
LGPVELAAVIAGPVCFVCISLMLMVYICHNRTVIHHRVPNEEDPSLDRPFISEGTTLKDL
IYDMTTSGSGSGLPLLVQRTIARTIVLQESIGKGRFGEVWRGKWRGEEVAVKIFSSREER
SWFREAEIYQTVMLRHENILGFIAADNKDNGTWTQLWLVSDYHEHGSLFDYLNRYTVTVE
GMIKLALSTASGLAHLHMEIVGTQGKPAIAHRDLKSKNILVKKNGTCCIADLGLAVRHDS
ATDTIDIAPNHRVGTKRYMAPEVLDDSINMKHFESFKRADIYAMGLVFWEIARRCSIGGI
HEDYQLPYYDLVPSDPSVEEMRKVVCEQKLRPNIPNRWQSCEALRVMAKIMRECWYANGA
ARLTALRIKKTLSQLSQQEGIKM
    Click to Show/Hide
Function
Transmembrane serine/threonine kinase forming with the TGF-beta type II serine/threonine kinase receptor, TGFBR2, the non-promiscuous receptor for the TGF-beta cytokines TGFB1, TGFB2 and TGFB3. Transduces the TGFB1, TGFB2 and TGFB3 signal from the cell surface to the cytoplasm and is thus regulating a plethora of physiological and pathological processes including cell cycle arrest in epithelial and hematopoietic cells, control of mesenchymal cell proliferation and differentiation, wound healing, extracellular matrix production, immunosuppression and carcinogenesis. The formation of the receptor complex composed of 2 TGFBR1 and 2 TGFBR2 molecules symmetrically bound to the cytokine dimer results in the phosphorylation and the activation of TGFBR1 by the constitutively active TGFBR2. Activated TGFBR1 phosphorylates SMAD2 which dissociates from the receptor and interacts with SMAD4. The SMAD2-SMAD4 complex is subsequently translocated to the nucleus where it modulates the transcription of the TGF-beta-regulated genes. This constitutes the canonical SMAD-dependent TGF-beta signaling cascade. Also involved in non-canonical, SMAD-independent TGF-beta signaling pathways. For instance, TGFBR1 induces TRAF6 autoubiquitination which in turn results in MAP3K7 ubiquitination and activation to trigger apoptosis. Also regulates epithelial to mesenchymal transition through a SMAD-independent signaling pathway through PARD6A phosphorylation and activation.
    Click to Show/Hide
Uniprot ID
TGFR1_HUMAN
Ensembl ID
ENSG00000106799
HGNC ID
HGNC:11772
        Click to Show/Hide the Complete Species Lineage
Kingdom: Metazoa
Phylum: Chordata
Class: Mammalia
Order: Primates
Family: Hominidae
Genus: Homo
Species: Homo sapiens
Type(s) of Resistant Mechanism of This Molecule
  RTDM: Regulation by the Disease Microenvironment
  UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Drug
Approved Drug(s)
1 drug(s) in total
Click to Show/Hide the Full List of Drugs
Cisplatin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Regulation by the Disease Microenvironment (RTDM) Click to Show/Hide
Disease Class: Esophageal cancer [1]
Resistant Disease Esophageal cancer [ICD-11: 2B70.1]
Resistant Drug Cisplatin
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell invasion Activation hsa05200
Cell migration Activation hsa04670
Cell proliferation Activation hsa05200
In Vitro Model TE10 cells Esophagus Homo sapiens (Human) CVCL_1760
Experiment for
Molecule Alteration
Elisa assay
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description miR-27 in serum originated mainly from esophageal cancer cells, because its serum expression level in patients with esophageal cancer was significantly higher than that of healthy volunteers and decreased significantly after surgery compared with the baseline (before surgery). Moreover, co-culture of fibroblasts with anti-miR-27-transfected esophageal cancer cells resulted in a major decrease in the antiapoptotic function of fibroblasts, compared with fibroblasts co-cultured with control esophageal cancer cells that secrete extracellular miR-27. Serum miR-27 level may reflect the expression level of extracellular miR-27 derived from esophageal cancer cells. miR-27 is involved in resistance to chemotherapy in esophageal cancer, through miR-27 -induced transformation of NOF into CAF, and that TGF-beta secreted from these CAF-like fibroblasts induces chemoresistance to cisplatin in esophageal cancer.
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Non-small cell lung cancer [2]
Sensitive Disease Non-small cell lung cancer [ICD-11: 2C25.Y]
Sensitive Drug Cisplatin
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell invasion Inhibition hsa05200
Cell migration Inhibition hsa04670
Cell proliferation Inhibition hsa05200
TGF-BetaR1/Smad signaling pathway Inhibition hsa04350
In Vitro Model A549 cells Lung Homo sapiens (Human) CVCL_0023
NCI-H1650 cells Lung Homo sapiens (Human) CVCL_1483
A549/DDP cells Lung Homo sapiens (Human) CVCL_0023
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description miR-181b inhibited cell proliferation, augmented the chemosensitivity to DDP, suppressed migration and invasion in NSCLC cells miR-181b inhibited cell proliferation, augmented the chemosensitivity to DDP, suppressed migration and invasion in NSCLC cells in vitro and in vivo. Furthermore, miR-181b may increase chemosensitivity to DDP and suppress the invasion and metastasis of NSCLC cells through directly targeting the TGFbetaR1 signaling miR-181b may increase chemosensitivity to DDP and suppress the invasion and metastasis of NSCLC cells through directly targeting the TGFbetaR1 signaling pathway.
Disease- and Tissue-specific Abundances of This Molecule
ICD Disease Classification 02
Click to Show/Hide the Resistance Disease of This Class
Esophageal cancer [ICD-11: 2B70]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Esophagus
The Specified Disease Esophageal cancer
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 1.40E-03; Fold-change: 1.26E+00; Z-score: 3.19E+00
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Lung cancer [ICD-11: 2C25]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Lung
The Specified Disease Lung cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 6.22E-02; Fold-change: 3.96E-01; Z-score: 4.08E-01
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 2.29E-02; Fold-change: 4.46E-01; Z-score: 4.72E-01
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Tissue-specific Molecule Abundances in Healthy Individuals
Click to Show/Hide the Molecule Abundances
References
Ref 1 miR-27 is associated with chemoresistance in esophageal cancer through transformation of normal fibroblasts to cancer-associated fibroblasts. Carcinogenesis. 2015 Aug;36(8):894-903. doi: 10.1093/carcin/bgv067. Epub 2015 May 30.
Ref 2 MiR-181b regulates cisplatin chemosensitivity and metastasis by targeting TGFBetaR1/Smad signaling pathway in NSCLC. Sci Rep. 2015 Dec 1;5:17618. doi: 10.1038/srep17618.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.