General Information of the Molecule (ID: Mol00646)
Name
Transcription factor Sp1 (SP1) ,Homo sapiens
Synonyms
TSFP1
    Click to Show/Hide
Molecule Type
Protein
Gene Name
SP1
Gene ID
6667
Location
chr12:53380176-53416446[+]
Sequence
MSDQDHSMDEMTAVVKIEKGVGGNNGGNGNGGGAFSQARSSSTGSSSSTGGGGQESQPSP
LALLAATCSRIESPNENSNNSQGPSQSGGTGELDLTATQLSQGANGWQIISSSSGATPTS
KEQSGSSTNGSNGSESSKNRTVSGGQYVVAAAPNLQNQQVLTGLPGVMPNIQYQVIPQFQ
TVDGQQLQFAATGAQVQQDGSGQIQIIPGANQQIITNRGSGGNIIAAMPNLLQQAVPLQG
LANNVLSGQTQYVTNVPVALNGNITLLPVNSVSAATLTPSSQAVTISSSGSQESGSQPVT
SGTTISSASLVSSQASSSSFFTNANSYSTTTTTSNMGIMNFTTSGSSGTNSQGQTPQRVS
GLQGSDALNIQQNQTSGGSLQAGQQKEGEQNQQTQQQQILIQPQLVQGGQALQALQAAPL
SGQTFTTQAISQETLQNLQLQAVPNSGPIIIRTPTVGPNGQVSWQTLQLQNLQVQNPQAQ
TITLAPMQGVSLGQTSSSNTTLTPIASAASIPAGTVTVNAAQLSSMPGLQTINLSALGTS
GIQVHPIQGLPLAIANAPGDHGAQLGLHGAGGDGIHDDTAGGEEGENSPDAQPQAGRRTR
REACTCPYCKDSEGRGSGDPGKKKQHICHIQGCGKVYGKTSHLRAHLRWHTGERPFMCTW
SYCGKRFTRSDELQRHKRTHTGEKKFACPECPKRFMRSDHLSKHIKTHQNKKGGPGVALS
VGTLPLDSGAGSEGSGTATPSALITTNMVAMEAICPEGIARLANSGINVMQVADLQSINI
SGNGF
    Click to Show/Hide
Function
Transcription factor that can activate or repress transcription in response to physiological and pathological stimuli. Binds with high affinity to GC-rich motifs and regulates the expression of a large number of genes involved in a variety of processes such as cell growth, apoptosis, differentiation and immune responses. Highly regulated by post-translational modifications (phosphorylations, sumoylation, proteolytic cleavage, glycosylation and acetylation). Binds also the PDGFR-alpha G-box promoter. May have a role in modulating the cellular response to DNA damage. Implicated in chromatin remodeling. Plays an essential role in the regulation of FE65 gene expression. In complex with ATF7IP, maintains telomerase activity in cancer cells by inducing TERT and TERC gene expression. Isoform 3 is a stronger activator of transcription than isoform 1. Positively regulates the transcription of the core clock component ARNTL/BMAL1. Plays a role in the recruitment of SMARCA4/BRG1 on the c-FOS promoter. Plays a role in protecting cells against oxidative stress following brain injury by regulating the expression of RNF112.
    Click to Show/Hide
Uniprot ID
SP1_HUMAN
Ensembl ID
ENSG00000185591
HGNC ID
HGNC:11205
        Click to Show/Hide the Complete Species Lineage
Kingdom: Metazoa
Phylum: Chordata
Class: Mammalia
Order: Primates
Family: Hominidae
Genus: Homo
Species: Homo sapiens
Type(s) of Resistant Mechanism of This Molecule
  UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Drug
Approved Drug(s)
2 drug(s) in total
Click to Show/Hide the Full List of Drugs
Paclitaxel
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Ovarian cancer [1]
Sensitive Disease Ovarian cancer [ICD-11: 2C73.0]
Sensitive Drug Paclitaxel
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
In Vitro Model MCF-7 cells Breast Homo sapiens (Human) CVCL_0031
SkOV3 cells Ovary Homo sapiens (Human) CVCL_0532
A2780 cells Ovary Homo sapiens (Human) CVCL_0134
MCF-7/ADM cells Breast Homo sapiens (Human) CVCL_0031
A2780/PTX cells Ovary Homo sapiens (Human) CVCL_IJ13
HOEC cells Ovary Homo sapiens (Human) N.A.
SkOV3/PTX cells Ovary Homo sapiens (Human) CVCL_HF69
In Vivo Model Nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description miR-145 modulates the cellular response to anticancer drugs, Down-regulation of miR-145 is correlated with overexpression of Sp1 and Cdk6, Sp1 and Cdk6 are targets of miR-145, miR-145 downregulated P-gp and pRb through inhibition of Sp1 and Cdk6, miR-145 sensitized EOC cells to paclitaxel via Sp1 and Cdk6 inhibition, Overexpression of miR-145 enhanced paclitaxel sensitivity in vivo.
Temozolomide
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Malignant glioma [2]
Resistant Disease Malignant glioma [ICD-11: 2A00.2]
Resistant Drug Temozolomide
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation DNA damage repair signaling pathway Activation hsa03410
In Vitro Model U251 cells Brain Homo sapiens (Human) CVCL_0021
LN229 cells Brain Homo sapiens (Human) CVCL_0393
U373 cells Brain Homo sapiens (Human) CVCL_2219
U118 cells Brain Homo sapiens (Human) CVCL_0633
NHA Brain Homo sapiens (Human) N.A.
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
MTT assay; BrdU incorporation assay
Mechanism Description XIST was inversely correlated with miR29c, positively correlated with PS1, positively related with MGMT. XIST can inhibit miR29c expression by directly binding to miR29c and subsequently up-regulate the expression of SP1 and MGMT to promote the chemoresistance of glioma cells to TMZ.
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Glioma [3]
Sensitive Disease Glioma [ICD-11: 2A00.1]
Sensitive Drug Temozolomide
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell invasion Inhibition hsa05200
Cell proliferation Inhibition hsa05200
DNA mismatch repair pathway Regulation hsa03430
In Vitro Model U251 cells Brain Homo sapiens (Human) CVCL_0021
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
MTT assay; Flow cytometry assay
Mechanism Description Ectopic expression of miR-29c increased TMZ sensitivity by inhibiting cell growth and promoting apoptosis in U251/TR cells.
Disease- and Tissue-specific Abundances of This Molecule
ICD Disease Classification 02
Click to Show/Hide the Resistance Disease of This Class
Brain cancer [ICD-11: 2A00]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Nervous tissue
The Specified Disease Brain cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 5.59E-26; Fold-change: 3.07E-01; Z-score: 5.36E-01
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
The Studied Tissue Brainstem tissue
The Specified Disease Glioma
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 3.80E-02; Fold-change: 2.52E-01; Z-score: 3.08E+00
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
The Studied Tissue White matter
The Specified Disease Glioma
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 2.02E-03; Fold-change: 7.28E-01; Z-score: 1.40E+00
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
The Studied Tissue Brainstem tissue
The Specified Disease Neuroectodermal tumor
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 7.21E-02; Fold-change: -1.23E-01; Z-score: -5.16E-01
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Ovarian cancer [ICD-11: 2C73]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Ovary
The Specified Disease Ovarian cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 7.36E-01; Fold-change: 5.65E-02; Z-score: 8.97E-02
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 3.44E-06; Fold-change: 8.21E-01; Z-score: 1.66E+00
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Tissue-specific Molecule Abundances in Healthy Individuals
Click to Show/Hide the Molecule Abundances
References
Ref 1 miR-145 sensitizes ovarian cancer cells to paclitaxel by targeting Sp1 and Cdk6. Int J Cancer. 2014 Sep 15;135(6):1286-96. doi: 10.1002/ijc.28774. Epub 2014 Apr 28.
Ref 2 LncRNA-XIST interacts with miR-29c to modulate the chemoresistance of glioma cell to TMZ through DNA mismatch repair pathway. Biosci Rep. 2017 Sep 7;37(5):BSR20170696. doi: 10.1042/BSR20170696. Print 2017 Oct 31.
Ref 3 miR-29c contribute to glioma cells temozolomide sensitivity by targeting O6-methylguanine-DNA methyltransferases indirectely. Oncotarget. 2016 Aug 2;7(31):50229-50238. doi: 10.18632/oncotarget.10357.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.