General Information of the Molecule (ID: Mol00545)
Name
PI3-kinase regulatory subunit alpha (PIK3R1) ,Homo sapiens
Synonyms
PI3-kinase regulatory subunit alpha; PI3K regulatory subunit alpha; PtdIns-3-kinase regulatory subunit alpha; Phosphatidylinositol 3-kinase 85 kDa regulatory subunit alpha; PI3-kinase subunit p85-alpha; PtdIns-3-kinase regulatory subunit p85-alpha; GRB1
    Click to Show/Hide
Molecule Type
Protein
Gene Name
PIK3R1
Gene ID
5295
Location
chr5:68215756-68301821[+]
Sequence
MSAEGYQYRALYDYKKEREEDIDLHLGDILTVNKGSLVALGFSDGQEARPEEIGWLNGYN
ETTGERGDFPGTYVEYIGRKKISPPTPKPRPPRPLPVAPGSSKTEADVEQQALTLPDLAE
QFAPPDIAPPLLIKLVEAIEKKGLECSTLYRTQSSSNLAELRQLLDCDTPSVDLEMIDVH
VLADAFKRYLLDLPNPVIPAAVYSEMISLAPEVQSSEEYIQLLKKLIRSPSIPHQYWLTL
QYLLKHFFKLSQTSSKNLLNARVLSEIFSPMLFRFSAASSDNTENLIKVIEILISTEWNE
RQPAPALPPKPPKPTTVANNGMNNNMSLQDAEWYWGDISREEVNEKLRDTADGTFLVRDA
STKMHGDYTLTLRKGGNNKLIKIFHRDGKYGFSDPLTFSSVVELINHYRNESLAQYNPKL
DVKLLYPVSKYQQDQVVKEDNIEAVGKKLHEYNTQFQEKSREYDRLYEEYTRTSQEIQMK
RTAIEAFNETIKIFEEQCQTQERYSKEYIEKFKREGNEKEIQRIMHNYDKLKSRISEIID
SRRRLEEDLKKQAAEYREIDKRMNSIKPDLIQLRKTRDQYLMWLTQKGVRQKKLNEWLGN
ENTEDQYSLVEDDEDLPHHDEKTWNVGSSNRNKAENLLRGKRDGTFLVRESSKQGCYACS
VVVDGEVKHCVINKTATGYGFAEPYNLYSSLKELVLHYQHTSLVQHNDSLNVTLAYPVYA
QQRR
    Click to Show/Hide
Function
Binds to activated (phosphorylated) protein-Tyr kinases, through its SH2 domain, and acts as an adapter, mediating the association of the p110 catalytic unit to the plasma membrane. Necessary for the insulin-stimulated increase in glucose uptake and glycogen synthesis in insulin-sensitive tissues. Plays an important role in signaling in response to FGFR1, FGFR2, FGFR3, FGFR4, KITLG/SCF, KIT, PDGFRA and PDGFRB. Likewise, plays a role in ITGB2 signaling. Modulates the cellular response to ER stress by promoting nuclear translocation of XBP1 isoform 2 in a ER stress- and/or insulin-dependent manner during metabolic overloading in the liver and hence plays a role in glucose tolerance improvement.
    Click to Show/Hide
Uniprot ID
P85A_HUMAN
Ensembl ID
ENSG00000145675
HGNC ID
HGNC:8979
        Click to Show/Hide the Complete Species Lineage
Kingdom: Metazoa
Phylum: Chordata
Class: Mammalia
Order: Primates
Family: Hominidae
Genus: Homo
Species: Homo sapiens
Type(s) of Resistant Mechanism of This Molecule
  UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Drug
Approved Drug(s)
4 drug(s) in total
Click to Show/Hide the Full List of Drugs
Cisplatin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Gastric cancer [1]
Resistant Disease Gastric cancer [ICD-11: 2B72.1]
Resistant Drug Cisplatin
Molecule Alteration Expression
Up-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation PI3K/AKT signaling pathway Activation hsa04151
In Vitro Model SGC7901 cells Gastric Homo sapiens (Human) CVCL_0520
BGC823 cells Gastric Homo sapiens (Human) CVCL_3360
In Vivo Model Nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
Western blot analysis; RT-qPCR
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description CircAkT3 regulates PIk3R1 expression, activates the PI3k/AkT signaling pathway and ultimately facilitates CDDP resistance by targeting miR-198 in vitro.
Disease Class: Ovarian cancer [2]
Resistant Disease Ovarian cancer [ICD-11: 2C73.0]
Resistant Drug Cisplatin
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation PI3K/AKT signaling pathway Activation hsa04151
In Vitro Model SkOV3 cells Ovary Homo sapiens (Human) CVCL_0532
Experiment for
Molecule Alteration
Western blot analysis; Luciferase reporter assay
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description miR503 might be a sensitizer to cisplatin treatment in ovarian cancer by targeting PI3k p85 and participating in the regulation of the PI3k/Akt signaling pathway. The role of miR503 in regulating cisplatin sensitivity in ovarian cancer cells is correlated with the activation of PI3k/Akt signaling.
Doxorubicin
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Diffuse large B-cell lymphoma [3]
Sensitive Disease Diffuse large B-cell lymphoma [ICD-11: 2A81.0]
Sensitive Drug Doxorubicin
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation MAPK/BCR/PI signaling pathway Regulation hsa04662
In Vitro Model SUDHL-4 cells Peritoneal effusion Homo sapiens (Human) CVCL_0539
Experiment for
Molecule Alteration
qRT-PCR
Experiment for
Drug Resistance
CellTiter-Blue Cell Viability assay
Mechanism Description miR370-3p, miR381-3p, and miR409-3p miRNAs appear to be the most potent regulators of the MAPk, BCR, and PI signaling system. Overexpression of miR370-3p, miR381-3p, and miR409-3p increases sensitivity to rituximab and doxorubicin.
Gemcitabine
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Pancreatic cancer [4]
Sensitive Disease Pancreatic cancer [ICD-11: 2C10.3]
Sensitive Drug Gemcitabine
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation PI3K/AKT signaling pathway Inhibition hsa04151
In Vitro Model MIA PaCa-2 cells Pancreas Homo sapiens (Human) CVCL_0428
PANC-1 cells Pancreas Homo sapiens (Human) CVCL_0480
Hs-578T cells Breast Homo sapiens (Human) CVCL_0332
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description Increased p85alpha expression in PDAC TCs results in decreased PI3k-AkT signaling and increased gemcitabine sensitivity. Expression of p85alpha inversely correlates with miR-21 levels in human PDAC. Overexpression of miR-21 results in decreased levels of p85alpha and increased PI3k-AkT activation.
Disease Class: Cholangiocarcinoma [5]
Sensitive Disease Cholangiocarcinoma [ICD-11: 2C12.0]
Sensitive Drug Gemcitabine
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
In Vitro Model HuCCT1 cells Bile duct Homo sapiens (Human) CVCL_0324
HuH28 cells Bile duct Homo sapiens (Human) CVCL_2955
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description Two miR-29b target genes, PIk3R1 and MMP-2, that are, at least partly, responsible for the resistance of CCA Gem treatment. PIk3R1 encodes phosphoinositide 3-kinase (PI3k) regulatory subunit designated p85 alpha; p85 alpha is regarded as integrator of multiple signaling pathways that together promote cell proliferation, cell survival, and carcinogenesis.
Rituximab
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Diffuse large B-cell lymphoma [3]
Sensitive Disease Diffuse large B-cell lymphoma [ICD-11: 2A81.0]
Sensitive Drug Rituximab
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation MAPK/BCR/PI signaling pathway Regulation hsa04662
In Vitro Model SUDHL-4 cells Peritoneal effusion Homo sapiens (Human) CVCL_0539
Experiment for
Molecule Alteration
qRT-PCR
Experiment for
Drug Resistance
CellTiter-Blue Cell Viability assay
Mechanism Description miR370-3p, miR381-3p, and miR409-3p miRNAs appear to be the most potent regulators of the MAPk, BCR, and PI signaling system. Overexpression of miR370-3p, miR381-3p, and miR409-3p increases sensitivity to rituximab and doxorubicin.
Disease Class: Diffuse large B-cell lymphoma [3]
Sensitive Disease Diffuse large B-cell lymphoma [ICD-11: 2A81.0]
Sensitive Drug Rituximab
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation MAPK/BCR/PI signaling pathway Regulation hsa04662
In Vitro Model SUDHL-4 cells Peritoneal effusion Homo sapiens (Human) CVCL_0539
Experiment for
Molecule Alteration
qRT-PCR
Experiment for
Drug Resistance
CellTiter-Blue Cell Viability assay
Mechanism Description miR370-3p, miR381-3p, and miR409-3p miRNAs appear to be the most potent regulators of the MAPk, BCR, and PI signaling system. Overexpression of miR370-3p, miR381-3p, and miR409-3p increases sensitivity to rituximab and doxorubicin.
Investigative Drug(s)
1 drug(s) in total
Click to Show/Hide the Full List of Drugs
Ginsenoside Rg3
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Colorectal cancer [6]
Sensitive Disease Colorectal cancer [ICD-11: 2B91.1]
Sensitive Drug Ginsenoside Rg3
Molecule Alteration Phosphorylation
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell invasion Inhibition hsa05200
Cell viability Inhibition hsa05200
PI3K/AKT signaling pathway Inhibition hsa04151
In Vitro Model CaCo2 cells Colon Homo sapiens (Human) CVCL_0025
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
CCK8 assay; Flow cytometry assay; Transwell assay
Mechanism Description Ginsenoside Rg3 inhibits cell growth, migration and invasion in Caco-2 cells by downregulation of LncRNA CCAT1.
Disease- and Tissue-specific Abundances of This Molecule
ICD Disease Classification 02
Click to Show/Hide the Resistance Disease of This Class
Gastric cancer [ICD-11: 2B72]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Gastric tissue
The Specified Disease Gastric cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 6.24E-01; Fold-change: -1.82E-01; Z-score: -2.66E-01
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 9.47E-01; Fold-change: -2.50E-01; Z-score: -3.00E-01
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Pancreatic cancer [ICD-11: 2C10]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Pancreas
The Specified Disease Pancreatic cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 7.95E-01; Fold-change: -1.88E-01; Z-score: -2.21E-01
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 4.95E-02; Fold-change: 3.45E-01; Z-score: 3.44E-01
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Liver cancer [ICD-11: 2C12]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Liver
The Specified Disease Liver cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 1.13E-05; Fold-change: -3.79E-01; Z-score: -6.76E-01
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 6.02E-30; Fold-change: -6.32E-01; Z-score: -1.02E+00
The Expression Level of Disease Section Compare with the Other Disease Section p-value: 4.12E-01; Fold-change: -7.21E-01; Z-score: -6.32E-01
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Molecule expression in tissue other than the diseased tissue of patients
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Ovarian cancer [ICD-11: 2C73]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Ovary
The Specified Disease Ovarian cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 5.20E-03; Fold-change: -1.29E+00; Z-score: -1.40E+00
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 4.34E-02; Fold-change: -4.66E-01; Z-score: -5.11E-01
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Tissue-specific Molecule Abundances in Healthy Individuals
Click to Show/Hide the Molecule Abundances
References
Ref 1 Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer. 2019 Mar 30;18(1):71. doi: 10.1186/s12943-019-0969-3.
Ref 2 Downregulation of miR-503 contributes to the development of drug resistance in ovarian cancer by targeting PI3K p85. Arch Gynecol Obstet. 2018 Mar;297(3):699-707. doi: 10.1007/s00404-018-4649-0. Epub 2018 Jan 11.
Ref 3 MicroRNAs regulate key cell survival pathways and mediate chemosensitivity during progression of diffuse large B-cell lymphoma. Blood Cancer J. 2017 Dec 15;7(12):654. doi: 10.1038/s41408-017-0033-8.
Ref 4 p85Alpha is a microRNA target and affects chemosensitivity in pancreatic cancer. J Surg Res. 2015 Jun 15;196(2):285-293. doi: 10.1016/j.jss.2015.02.071. Epub 2015 Mar 6.
Ref 5 miR-29b, miR-205 and miR-221 enhance chemosensitivity to gemcitabine in HuH28 human cholangiocarcinoma cells. PLoS One. 2013 Oct 17;8(10):e77623. doi: 10.1371/journal.pone.0077623. eCollection 2013.
Ref 6 Ginsenoside Rg3 inhibits cell growth, migration and invasion in Caco-2 cells by downregulation of lncRNA CCAT1. Exp Mol Pathol. 2019 Feb;106:131-138. doi: 10.1016/j.yexmp.2019.01.003. Epub 2019 Jan 8.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.