General Information of the Molecule (ID: Mol00507)
Name
MOB kinase activator 1A (MOB1A) ,Homo sapiens
Synonyms
Mob1 alpha; Mob1A; Mob1 homolog 1B; Mps one binder kinase activator-like 1B; C2orf6; MOB4B; MOBK1B; MOBKL1B
    Click to Show/Hide
Molecule Type
Protein
Gene Name
MOB1A
Gene ID
55233
Location
chr2:74152528-74178898[-]
Sequence
MSFLFSSRSSKTFKPKKNIPEGSHQYELLKHAEATLGSGNLRQAVMLPEGEDLNEWIAVN
TVDFFNQINMLYGTITEFCTEASCPVMSAGPRYEYHWADGTNIKKPIKCSAPKYIDYLMT
WVQDQLDDETLFPSKIGVPFPKNFMSVAKTILKRLFRVYAHIYHQHFDSVMQLQEEAHLN
TSFKHFIFFVQEFNLIDRRELAPLQELIEKLGSKDR
    Click to Show/Hide
Function
Activator of LATS1/2 in the Hippo signaling pathway which plays a pivotal role in organ size control and tumor suppression by restricting proliferation and promoting apoptosis. The core of this pathway is composed of a kinase cascade wherein STK3/MST2 and STK4/MST1, in complex with its regulatory protein SAV1, phosphorylates and activates LATS1/2 in complex with its regulatory protein MOB1, which in turn phosphorylates and inactivates YAP1 oncoprotein and WWTR1/TAZ. Phosphorylation of YAP1 by LATS1/2 inhibits its translocation into the nucleus to regulate cellular genes important for cell proliferation, cell death, and cell migration. Stimulates the kinase activity of STK38 and STK38L. Acts cooperatively with STK3/MST2 to activate STK38.
    Click to Show/Hide
Uniprot ID
MOB1A_HUMAN
Ensembl ID
ENSG00000114978
HGNC ID
HGNC:16015
        Click to Show/Hide the Complete Species Lineage
Kingdom: Metazoa
Phylum: Chordata
Class: Mammalia
Order: Primates
Family: Hominidae
Genus: Homo
Species: Homo sapiens
Type(s) of Resistant Mechanism of This Molecule
  UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Drug
Approved Drug(s)
3 drug(s) in total
Click to Show/Hide the Full List of Drugs
Fluorouracil
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Pancreatic cancer [1]
Resistant Disease Pancreatic cancer [ICD-11: 2C10.3]
Resistant Drug Fluorouracil
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
Hippo signaling pathway Regulation hsa04392
In Vitro Model BxPC-3 cells Pancreas Homo sapiens (Human) CVCL_0186
PANC-1 cells Pancreas Homo sapiens (Human) CVCL_0480
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description miR-181c directly repressed MST1, LATS2, MOB1 and SAV1 expression in human pancreatic cancer cells. Overexpression of miR-181c induced hyperactivation of the YAP/TAZ and (+) expression of the Hippo signaling downstream genes CTGF, BIRC5 and BLC2L1, leading to pancreatic cancer cell survival and chemoresistance in vitro and in vivo. Importantly, high miR-181c levels were significantly correlated with Hippo signaling inactivation in pancreatic cancer samples, and predicted a poor patient overall survival.
Gemcitabine
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Pancreatic cancer [1]
Resistant Disease Pancreatic cancer [ICD-11: 2C10.3]
Resistant Drug Gemcitabine
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
Hippo signaling pathway Regulation hsa04392
In Vitro Model BxPC-3 cells Pancreas Homo sapiens (Human) CVCL_0186
PANC-1 cells Pancreas Homo sapiens (Human) CVCL_0480
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description miR-181c directly repressed MST1, LATS2, MOB1 and SAV1 expression in human pancreatic cancer cells. Overexpression of miR-181c induced hyperactivation of the YAP/TAZ and (+) expression of the Hippo signaling downstream genes CTGF, BIRC5 and BLC2L1, leading to pancreatic cancer cell survival and chemoresistance in vitro and in vivo. Importantly, high miR-181c levels were significantly correlated with Hippo signaling inactivation in pancreatic cancer samples, and predicted a poor patient overall survival.
Paclitaxel
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Pancreatic cancer [1]
Resistant Disease Pancreatic cancer [ICD-11: 2C10.3]
Resistant Drug Paclitaxel
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
Hippo signaling pathway Regulation hsa04392
In Vitro Model BxPC-3 cells Pancreas Homo sapiens (Human) CVCL_0186
PANC-1 cells Pancreas Homo sapiens (Human) CVCL_0480
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
Flow cytometry assay
Mechanism Description miR-181c directly repressed MST1, LATS2, MOB1 and SAV1 expression in human pancreatic cancer cells. Overexpression of miR-181c induced hyperactivation of the YAP/TAZ and (+) expression of the Hippo signaling downstream genes CTGF, BIRC5 and BLC2L1, leading to pancreatic cancer cell survival and chemoresistance in vitro and in vivo. Importantly, high miR-181c levels were significantly correlated with Hippo signaling inactivation in pancreatic cancer samples, and predicted a poor patient overall survival.
Disease- and Tissue-specific Abundances of This Molecule
ICD Disease Classification 02
Click to Show/Hide the Resistance Disease of This Class
Pancreatic cancer [ICD-11: 2C10]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Pancreas
The Specified Disease Pancreatic cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 4.13E-02; Fold-change: 5.31E-01; Z-score: 8.18E-01
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 1.04E-05; Fold-change: 4.61E-01; Z-score: 4.76E-01
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Tissue-specific Molecule Abundances in Healthy Individuals
Click to Show/Hide the Molecule Abundances
References
Ref 1 Upregulation of miR-181c contributes to chemoresistance in pancreatic cancer by inactivating the Hippo signaling pathway. Oncotarget. 2015 Dec 29;6(42):44466-79. doi: 10.18632/oncotarget.6298.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.