General Information of the Molecule (ID: Mol00504)
Name
Microtubule-associated proteins 1A/1B light chain 3A (MAP1LC3A) ,Homo sapiens
Synonyms
Autophagy-related protein LC3 A; Autophagy-related ubiquitin-like modifier LC3 A; MAP1 light chain 3-like protein 1; MAP1A/MAP1B light chain 3 A; MAP1A/MAP1B LC3 A; Microtubule-associated protein 1 light chain 3 alpha
    Click to Show/Hide
Molecule Type
Protein
Gene Name
MAP1LC3A
Gene ID
84557
Location
chr20:34546854-34560345[+]
Sequence
MPSDRPFKQRRSFADRCKEVQQIRDQHPSKIPVIIERYKGEKQLPVLDKTKFLVPDHVNM
SELVKIIRRRLQLNPTQAFFLLVNQHSMVSVSTPIADIYEQEKDEDGFLYMVYASQETFG
F
    Click to Show/Hide
Function
Ubiquitin-like modifier involved in formation of autophagosomal vacuoles (autophagosomes). While LC3s are involved in elongation of the phagophore membrane, the GABARAP/GATE-16 subfamily is essential for a later stage in autophagosome maturation. Through its interaction with the reticulophagy receptor TEX264, participates in the remodeling of subdomains of the endoplasmic reticulum into autophagosomes upon nutrient stress, which then fuse with lysosomes for endoplasmic reticulum turnover.
    Click to Show/Hide
Uniprot ID
MLP3A_HUMAN
Ensembl ID
ENSG00000101460
HGNC ID
HGNC:6838
        Click to Show/Hide the Complete Species Lineage
Kingdom: Metazoa
Phylum: Chordata
Class: Mammalia
Order: Primates
Family: Hominidae
Genus: Homo
Species: Homo sapiens
Type(s) of Resistant Mechanism of This Molecule
  UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Drug
Approved Drug(s)
1 drug(s) in total
Click to Show/Hide the Full List of Drugs
Doxorubicin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Osteosarcoma [1]
Resistant Disease Osteosarcoma [ICD-11: 2B51.0]
Resistant Drug Doxorubicin
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Activation hsa04210
Cell proliferation Inhibition hsa05200
In Vitro Model SAOS-2 cells Bone marrow Homo sapiens (Human) CVCL_0548
U2OS cells Bone Homo sapiens (Human) CVCL_0042
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
MTT assay; Matrigel colony formation assay; Hoechst33342 staining assay
Mechanism Description In chemoresistant SAOS-2 and U2OS osteosarcomas cells, miR-143 levels were significantly downregulated and accompanied by increases in ATG2B, Bcl-2, and/or LC3-II protein levels, high rate of ALDH1+CD133+ cells, and an increase in Matrigel colony formation ability. H2O2 upregulated p53 and miR-143, but downregulated ATG2B, Bcl-2, and LC3-I expression in U2OS cells (wild-type p53) but not in SAOS-2 (p53-null) cells. Forced miR-143 expression significantly reversed chemoresistance as well as downregulation of ATG2B, LC3-I, and Bcl-2 expression in SAOS-2- and U2OS-resistant cells. Forced miR-143 expression significantly inhibited tumor growth in xenograft SAOS-2-Dox and U2OS-Dox animal models. Loss of miR-143 expression is associated with poor prognosis of patients with osteosarcoma underlying chemotherapy. The chemoresistance of osteosarcoma tumor cells to doxorubicin is associated with the downregulation of miR-143 expression, activation of ALDH1+CD133+ cells, activation of autophagy, and inhibition of cell death.
References
Ref 1 microRNA-143 is associated with the survival of ALDH1+CD133+ osteosarcoma cells and the chemoresistance of osteosarcoma. Exp Biol Med (Maywood). 2015 Jul;240(7):867-75. doi: 10.1177/1535370214563893. Epub 2015 Jan 8.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.