General Information of the Molecule (ID: Mol00462)
Name
Protein kinase C delta type (PRKCD) ,Homo sapiens
Synonyms
Tyrosine-protein kinase PRKCD; nPKC-delta; Sphingosine-dependent protein kinase-1; SDK1; PKCD
    Click to Show/Hide
Molecule Type
Protein
Gene Name
PRKCD
Gene ID
5580
Location
chr3:53156009-53192717[+]
Sequence
MAPFLRIAFNSYELGSLQAEDEANQPFCAVKMKEALSTERGKTLVQKKPTMYPEWKSTFD
AHIYEGRVIQIVLMRAAEEPVSEVTVGVSVLAERCKKNNGKAEFWLDLQPQAKVLMSVQY
FLEDVDCKQSMRSEDEAKFPTMNRRGAIKQAKIHYIKNHEFIATFFGQPTFCSVCKDFVW
GLNKQGYKCRQCNAAIHKKCIDKIIGRCTGTAANSRDTIFQKERFNIDMPHRFKVHNYMS
PTFCDHCGSLLWGLVKQGLKCEDCGMNVHHKCREKVANLCGINQKLLAEALNQVTQRASR
RSDSASSEPVGIYQGFEKKTGVAGEDMQDNSGTYGKIWEGSSKCNINNFIFHKVLGKGSF
GKVLLGELKGRGEYFAIKALKKDVVLIDDDVECTMVEKRVLTLAAENPFLTHLICTFQTK
DHLFFVMEFLNGGDLMYHIQDKGRFELYRATFYAAEIMCGLQFLHSKGIIYRDLKLDNVL
LDRDGHIKIADFGMCKENIFGESRASTFCGTPDYIAPEILQGLKYTFSVDWWSFGVLLYE
MLIGQSPFHGDDEDELFESIRVDTPHYPRWITKESKDILEKLFEREPTKRLGVTGNIKIH
PFFKTINWTLLEKRRLEPPFRPKVKSPRDYSNFDQEFLNEKARLSYSDKNLIDSMDQSAF
AGFSFVNPKFEHLLED
    Click to Show/Hide
Function
Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays contrasting roles in cell death and cell survival by functioning as a pro-apoptotic protein during DNA damage-induced apoptosis, but acting as an anti-apoptotic protein during cytokine receptor-initiated cell death, is involved in tumor suppression as well as survival of several cancers, is required for oxygen radical production by NADPH oxidase and acts as positive or negative regulator in platelet functional responses. Negatively regulates B cell proliferation and also has an important function in self-antigen induced B cell tolerance induction. Upon DNA damage, activates the promoter of the death-promoting transcription factor BCLAF1/Btf to trigger BCLAF1-mediated p53/TP53 gene transcription and apoptosis. In response to oxidative stress, interact with and activate CHUK/IKKA in the nucleus, causing the phosphorylation of p53/TP53. In the case of ER stress or DNA damage-induced apoptosis, can form a complex with the tyrosine-protein kinase ABL1 which trigger apoptosis independently of p53/TP53. In cytosol can trigger apoptosis by activating MAPK11 or MAPK14, inhibiting AKT1 and decreasing the level of X-linked inhibitor of apoptosis protein (XIAP), whereas in nucleus induces apoptosis via the activation of MAPK8 or MAPK9. Upon ionizing radiation treatment, is required for the activation of the apoptosis regulators BAX and BAK, which trigger the mitochondrial cell death pathway. Can phosphorylate MCL1 and target it for degradation which is sufficient to trigger for BAX activation and apoptosis. Is required for the control of cell cycle progression both at G1/S and G2/M phases. Mediates phorbol 12-myristate 13-acetate (PMA)-induced inhibition of cell cycle progression at G1/S phase by up-regulating the CDK inhibitor CDKN1A/p21 and inhibiting the cyclin CCNA2 promoter activity. In response to UV irradiation can phosphorylate CDK1, which is important for the G2/M DNA damage checkpoint activation. Can protect glioma cells from the apoptosis induced by TNFSF10/TRAIL, probably by inducing increased phosphorylation and subsequent activation of AKT1. Is highly expressed in a number of cancer cells and promotes cell survival and resistance against chemotherapeutic drugs by inducing cyclin D1 (CCND1) and hyperphosphorylation of RB1, and via several pro-survival pathways, including NF-kappa-B, AKT1 and MAPK1/3 (ERK1/2). Involved in antifungal immunity by mediating phosphorylation and activation of CARD9 downstream of C-type lectin receptors activation, promoting interaction between CARD9 and BCL10, followed by activation of NF-kappa-B and MAP kinase p38 pathways. Can also act as tumor suppressor upon mitogenic stimulation with PMA or TPA. In N-formyl-methionyl-leucyl-phenylalanine (fMLP)-treated cells, is required for NCF1 (p47-phox) phosphorylation and activation of NADPH oxidase activity, and regulates TNF-elicited superoxide anion production in neutrophils, by direct phosphorylation and activation of NCF1 or indirectly through MAPK1/3 (ERK1/2) signaling pathways. May also play a role in the regulation of NADPH oxidase activity in eosinophil after stimulation with IL5, leukotriene B4 or PMA. In collagen-induced platelet aggregation, acts a negative regulator of filopodia formation and actin polymerization by interacting with and negatively regulating VASP phosphorylation. Downstream of PAR1, PAR4 and CD36/GP4 receptors, regulates differentially platelet dense granule secretion; acts as a positive regulator in PAR-mediated granule secretion, whereas it negatively regulates CD36/GP4-mediated granule release. Phosphorylates MUC1 in the C-terminal and regulates the interaction between MUC1 and beta-catenin. The catalytic subunit phosphorylates 14-3-3 proteins (YWHAB, YWHAZ and YWHAH) in a sphingosine-dependent fashion. Phosphorylates ELAVL1 in response to angiotensin-2 treatment. Phosphorylates mitochondrial phospholipid scramblase 3 (PLSCR3), resulting in increased cardiolipin expression on the mitochondrial outer membrane which facilitates apoptosis. Phosphorylates SMPD1 which induces SMPD1 secretion.
    Click to Show/Hide
Uniprot ID
KPCD_HUMAN
Ensembl ID
ENSG00000163932
HGNC ID
HGNC:9399
        Click to Show/Hide the Complete Species Lineage
Kingdom: Metazoa
Phylum: Chordata
Class: Mammalia
Order: Primates
Family: Hominidae
Genus: Homo
Species: Homo sapiens
Type(s) of Resistant Mechanism of This Molecule
  UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Drug
Approved Drug(s)
1 drug(s) in total
Click to Show/Hide the Full List of Drugs
Cisplatin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Ovarian papillary serous carcinoma [1]
Resistant Disease Ovarian papillary serous carcinoma [ICD-11: 2C73.4]
Resistant Drug Cisplatin
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
PRKCD signaling pathway Inhibition hsa05208
In Vitro Model A2780 cells Ovary Homo sapiens (Human) CVCL_0134
OV2008 cells Ovary Homo sapiens (Human) CVCL_0473
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
MTS assay; TUNEL assay
Mechanism Description PRkCD, known as protein kinase C deta, is a PkC isozyme that acts as a substrate for caspase-3. Its activity is believed to be required for apoptosis induced by DNA damaging agents such as cisplatin, mitomycin C and doxorubicin. miR-224-5p could negatively regulate the expression of PRkCD, and together with PRkCD, they can serve as novel predictors and prognostic biomarkers for OPSC patient response to overall disease-specific survival. The PRkCD pathway may be a molecular mechanism through which miR-224-5p exerts its functions as an oncogene and enhancer of chemoresistance to cisplatin in OPSC patients.
Disease Class: Cervical squamous cell carcinoma [2]
Resistant Disease Cervical squamous cell carcinoma [ICD-11: 2C77.3]
Resistant Drug Cisplatin
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
Cell proliferation Activation hsa05200
In Vitro Model Siha cells Cervix uteri Homo sapiens (Human) CVCL_0032
ME-180 cells Uterus Homo sapiens (Human) CVCL_1401
In Vivo Model BALB/c nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
CCK8 assay
Mechanism Description The down-regulation of PRkCD expression may be a molecular mechanism through which miR-181a exerts its functions as an oncogene and an enhancer of chemoresistance to cisplatin in cervical squamous cell carcinoma cells.
Disease- and Tissue-specific Abundances of This Molecule
ICD Disease Classification 02
Click to Show/Hide the Resistance Disease of This Class
Ovarian cancer [ICD-11: 2C73]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Ovary
The Specified Disease Ovarian cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 1.84E-03; Fold-change: 1.46E+00; Z-score: 1.94E+00
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 7.50E-04; Fold-change: 6.89E-01; Z-score: 7.41E-01
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Cervical cancer [ICD-11: 2C77]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Cervix uteri
The Specified Disease Cervical cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 4.05E-01; Fold-change: -1.58E-01; Z-score: -3.07E-01
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Tissue-specific Molecule Abundances in Healthy Individuals
Click to Show/Hide the Molecule Abundances
References
Ref 1 Expression of miR-224-5p is associated with the original cisplatin resistance of ovarian papillary serous carcinoma. Oncol Rep. 2014 Sep;32(3):1003-12. doi: 10.3892/or.2014.3311. Epub 2014 Jul 7.
Ref 2 MicroRNA-181a enhances the chemoresistance of human cervical squamous cell carcinoma to cisplatin by targeting PRKCD. Exp Cell Res. 2014 Jan 1;320(1):12-20. doi: 10.1016/j.yexcr.2013.10.014. Epub 2013 Oct 31.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.