General Information of the Molecule (ID: Mol00439)
Name
Inositol monophosphatase 1 (IMPA1) ,Homo sapiens
Synonyms
IMP 1; IMPase 1; D-galactose 1-phosphate phosphatase; Inositol-1(or 4)-monophosphatase 1; Lithium-sensitive myo-inositol monophosphatase A1; IMPA
    Click to Show/Hide
Molecule Type
Protein
Gene Name
IMPA1
Gene ID
3612
Location
chr8:81656914-81686331[-]
Sequence
MADPWQECMDYAVTLARQAGEVVCEAIKNEMNVMLKSSPVDLVTATDQKVEKMLISSIKE
KYPSHSFIGEESVAAGEKSILTDNPTWIIDPIDGTTNFVHRFPFVAVSIGFAVNKKIEFG
VVYSCVEGKMYTARKGKGAFCNGQKLQVSQQEDITKSLLVTELGSSRTPETVRMVLSNME
KLFCIPVHGIRSVGTAAVNMCLVATGGADAYYEMGIHCWDVAGAGIIVTEAGGVLMDVTG
GPFDLMSRRVIAANNRILAERIAKEIQVIPLQRDDED
    Click to Show/Hide
Function
Responsible for the provision of inositol required for synthesis of phosphatidylinositol and polyphosphoinositides and has been implicated as the pharmacological target for lithium action in brain. Has broad substrate specificity and can use myo-inositol monophosphates, myo-inositol 1,3-diphosphate, myo-inositol 1,4-diphosphate, scyllo-inositol-phosphate, D-galactose 1-phosphate, glucose-1-phosphate, glucose-6-phosphate, fructose-1-phosphate, beta-glycerophosphate, and 2'-AMP as substrates.
    Click to Show/Hide
Uniprot ID
IMPA1_HUMAN
Ensembl ID
ENSG00000133731
HGNC ID
HGNC:6050
        Click to Show/Hide the Complete Species Lineage
Kingdom: Metazoa
Phylum: Chordata
Class: Mammalia
Order: Primates
Family: Hominidae
Genus: Homo
Species: Homo sapiens
Type(s) of Resistant Mechanism of This Molecule
  UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Drug
Approved Drug(s)
2 drug(s) in total
Click to Show/Hide the Full List of Drugs
Doxorubicin
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Diffuse large B-cell lymphoma [1]
Sensitive Disease Diffuse large B-cell lymphoma [ICD-11: 2A81.0]
Sensitive Drug Doxorubicin
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation MAPK/BCR/PI signaling pathway Regulation hsa04662
In Vitro Model SUDHL-4 cells Peritoneal effusion Homo sapiens (Human) CVCL_0539
Experiment for
Molecule Alteration
qRT-PCR
Experiment for
Drug Resistance
CellTiter-Blue Cell Viability assay
Mechanism Description miR370-3p, miR381-3p, and miR409-3p miRNAs appear to be the most potent regulators of the MAPk, BCR, and PI signaling system. Overexpression of miR370-3p, miR381-3p, and miR409-3p increases sensitivity to rituximab and doxorubicin.
Rituximab
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Diffuse large B-cell lymphoma [1]
Sensitive Disease Diffuse large B-cell lymphoma [ICD-11: 2A81.0]
Sensitive Drug Rituximab
Molecule Alteration Expression
Down-regulation
Experimental Note Identified from the Human Clinical Data
Cell Pathway Regulation MAPK/BCR/PI signaling pathway Regulation hsa04662
In Vitro Model SUDHL-4 cells Peritoneal effusion Homo sapiens (Human) CVCL_0539
Experiment for
Molecule Alteration
qRT-PCR
Experiment for
Drug Resistance
CellTiter-Blue Cell Viability assay
Mechanism Description miR370-3p, miR381-3p, and miR409-3p miRNAs appear to be the most potent regulators of the MAPk, BCR, and PI signaling system. Overexpression of miR370-3p, miR381-3p, and miR409-3p increases sensitivity to rituximab and doxorubicin.
References
Ref 1 MicroRNAs regulate key cell survival pathways and mediate chemosensitivity during progression of diffuse large B-cell lymphoma. Blood Cancer J. 2017 Dec 15;7(12):654. doi: 10.1038/s41408-017-0033-8.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.