General Information of the Molecule (ID: Mol00408)
Name
Homeodomain-interacting protein kinase 2 (HIPK2) ,Homo sapiens
Synonyms
hHIPk2
    Click to Show/Hide
Molecule Type
Protein
Gene Name
HIPK2
Gene ID
28996
Location
chr7:139561570-139777998[-]
Sequence
MAPVYEGMASHVQVFSPHTLQSSAFCSVKKLKIEPSSNWDMTGYGSHSKVYSQSKNIPLS
QPATTTVSTSLPVPNPSLPYEQTIVFPGSTGHIVVTSASSTSVTGQVLGGPHNLMRRSTV
SLLDTYQKCGLKRKSEEIENTSSVQIIEEHPPMIQNNASGATVATATTSTATSKNSGSNS
EGDYQLVQHEVLCSMTNTYEVLEFLGRGTFGQVVKCWKRGTNEIVAIKILKNHPSYARQG
QIEVSILARLSTESADDYNFVRAYECFQHKNHTCLVFEMLEQNLYDFLKQNKFSPLPLKY
IRPVLQQVATALMKLKSLGLIHADLKPENIMLVDPSRQPYRVKVIDFGSASHVSKAVCST
YLQSRYYRAPEIILGLPFCEAIDMWSLGCVIAELFLGWPLYPGASEYDQIRYISQTQGLP
AEYLLSAGTKTTRFFNRDTDSPYPLWRLKTPDDHEAETGIKSKEARKYIFNCLDDMAQVN
MTTDLEGSDMLVEKADRREFIDLLKKMLTIDADKRITPIETLNHPFVTMTHLLDFPHSTH
VKSCFQNMEICKRRVNMYDTVNQSKTPFITHVAPSTSTNLTMTFNNQLTTVHNQAPSSTS
ATISLANPEVSILNYPSTLYQPSAASMAAVAQRSMPLQTGTAQICARPDPFQQALIVCPP
GFQGLQASPSKHAGYSVRMENAVPIVTQAPGAQPLQIQPGLLAQQAWPSGTQQILLPPAW
QQLTGVATHTSVQHATVIPETMAGTQQLADWRNTHAHGSHYNPIMQQPALLTGHVTLPAA
QPLNVGVAHVMRQQPTSTTSSRKSKQHQSSVRNVSTCEVSSSQAISSPQRSKRVKENTPP
RCAMVHSSPACSTSVTCGWGDVASSTTRERQRQTIVIPDTPSPTVSVITISSDTDEEEEQ
KHAPTSTVSKQRKNVISCVTVHDSPYSDSSSNTSPYSVQQRAGHNNANAFDTKGSLENHC
TGNPRTIIVPPLKTQASEVLVECDSLVPVNTSHHSSSYKSKSSSNVTSTSGHSSGSSSGA
ITYRQQRPGPHFQQQQPLNLSQAQQHITTDRTGSHRRQQAYITPTMAQAPYSFPHNSPSH
GTVHPHLAAAAAAAHLPTQPHLYTYTAPAALGSTGTVAHLVASQGSARHTVQHTAYPASI
VHQVPVSMGPRVLPSPTIHPSQYPAQFAHQTYISASPASTVYTGYPLSPAKVNQYPYI
    Click to Show/Hide
Function
Serine/threonine-protein kinase involved in transcription regulation, p53/TP53-mediated cellular apoptosis and regulation of the cell cycle. Acts as a corepressor of several transcription factors, including SMAD1 and POU4F1/Brn3a and probably NK homeodomain transcription factors. Phosphorylates PDX1, ATF1, PML, p53/TP53, CREB1, CTBP1, CBX4, RUNX1, EP300, CTNNB1, HMGA1 and ZBTB4. Inhibits cell growth and promotes apoptosis through the activation of p53/TP53 both at the transcription level and at the protein level (by phosphorylation and indirect acetylation). The phosphorylation of p53/TP53 may be mediated by a p53/TP53-HIPK2-AXIN1 complex. Involved in the response to hypoxia by acting as a transcriptional co-suppressor of HIF1A. Mediates transcriptional activation of TP73. In response to TGFB, cooperates with DAXX to activate JNK. Negative regulator through phosphorylation and subsequent proteasomal degradation of CTNNB1 and the antiapoptotic factor CTBP1. In the Wnt/beta-catenin signaling pathway acts as an intermediate kinase between MAP3K7/TAK1 and NLK to promote the proteasomal degradation of MYB. Phosphorylates CBX4 upon DNA damage and promotes its E3 SUMO-protein ligase activity. Activates CREB1 and ATF1 transcription factors by phosphorylation in response to genotoxic stress. In response to DNA damage, stabilizes PML by phosphorylation. PML, HIPK2 and FBXO3 may act synergically to activate p53/TP53-dependent transactivation. Promotes angiogenesis, and is involved in erythroid differentiation, especially during fetal liver erythropoiesis. Phosphorylation of RUNX1 and EP300 stimulates EP300 transcription regulation activity. Triggers ZBTB4 protein degradation in response to DNA damage. Modulates HMGA1 DNA-binding affinity. In response to high glucose, triggers phosphorylation-mediated subnuclear localization shifting of PDX1. Involved in the regulation of eye size, lens formation and retinal lamination during late embryogenesis.
    Click to Show/Hide
Uniprot ID
HIPK2_HUMAN
Ensembl ID
ENSG00000064393
HGNC ID
HGNC:14402
        Click to Show/Hide the Complete Species Lineage
Kingdom: Metazoa
Phylum: Chordata
Class: Mammalia
Order: Primates
Family: Hominidae
Genus: Homo
Species: Homo sapiens
Type(s) of Resistant Mechanism of This Molecule
  UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Drug
Approved Drug(s)
1 drug(s) in total
Click to Show/Hide the Full List of Drugs
Paclitaxel
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Ovarian cancer [1]
Resistant Disease Ovarian cancer [ICD-11: 2C73.0]
Resistant Drug Paclitaxel
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
miRNAs/HIPk2/MDR1/P-gp signaling pathway Regulation hsa05206
In Vitro Model A2780 cells Ovary Homo sapiens (Human) CVCL_0134
Experiment for
Molecule Alteration
Western blotting analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description Transfection of A2780/Taxol cells with the inhibitors of miR-27a decreased the expression of MDR1 mRNA and P-gp protein, increased HIPk2 protein expression, enhanced the sensitivity of A2780/taxol cells to paclitaxel, increased paclitaxel-induced apoptosis and the fluorescence intensity of intracellular Rh-123. The deregulation of miR-27a may be involved in the development of drug resistance, regulating the expression of MDR1/P-gp, at least in part, by targeting HIPk2 in ovarian cancer cells.
Disease- and Tissue-specific Abundances of This Molecule
ICD Disease Classification 02
Click to Show/Hide the Resistance Disease of This Class
Ovarian cancer [ICD-11: 2C73]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Ovary
The Specified Disease Ovarian cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 4.73E-01; Fold-change: -6.68E-03; Z-score: -3.28E-02
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 2.22E-01; Fold-change: 2.25E-01; Z-score: 5.02E-01
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Tissue-specific Molecule Abundances in Healthy Individuals
Click to Show/Hide the Molecule Abundances
References
Ref 1 MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol Oncol. 2010 Oct;119(1):125-30. doi: 10.1016/j.ygyno.2010.06.004. Epub 2010 Jul 10.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.