General Information of the Molecule (ID: Mol00405)
Name
Histone deacetylase 3 (HDAC3) ,Homo sapiens
Synonyms
HD3; Protein deacetylase HDAC3; Protein deacylase HDAC3; RPD3-2; SMAP45
    Click to Show/Hide
Molecule Type
Protein
Gene Name
HDAC3
Gene ID
8841
Location
chr5:141620876-141636849[-]
Sequence
MAKTVAYFYDPDVGNFHYGAGHPMKPHRLALTHSLVLHYGLYKKMIVFKPYQASQHDMCR
FHSEDYIDFLQRVSPTNMQGFTKSLNAFNVGDDCPVFPGLFEFCSRYTGASLQGATQLNN
KICDIAINWAGGLHHAKKFEASGFCYVNDIVIGILELLKYHPRVLYIDIDIHHGDGVQEA
FYLTDRVMTVSFHKYGNYFFPGTGDMYEVGAESGRYYCLNVPLRDGIDDQSYKHLFQPVI
NQVVDFYQPTCIVLQCGADSLGCDRLGCFNLSIRGHGECVEYVKSFNIPLLVLGGGGYTV
RNVARCWTYETSLLVEEAISEELPYSEYFEYFAPDFTLHPDVSTRIENQNSRQYLDQIRQ
TIFENLKMLNHAPSVQIHDVPADLLTYDRTDEADAEERGPEENYSRPEAPNEFYDGDHDN
DKESDVEI
    Click to Show/Hide
Function
Histone deacetylase that catalyzes the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4), and some other non-histone substrates. Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Participates in the BCL6 transcriptional repressor activity by deacetylating the H3 'Lys-27' (H3K27) on enhancer elements, antagonizing EP300 acetyltransferase activity and repressing proximal gene expression. Acts as a molecular chaperone for shuttling phosphorylated NR2C1 to PML bodies for sumoylation. Contributes, together with XBP1 isoform 1, to the activation of NFE2L2-mediated HMOX1 transcription factor gene expression in a PI(3)K/mTORC2/Akt-dependent signaling pathway leading to endothelial cell (EC) survival under disturbed flow/oxidative stress. Regulates both the transcriptional activation and repression phases of the circadian clock in a deacetylase activity-independent manner. During the activation phase, promotes the accumulation of ubiquitinated ARNTL/BMAL1 at the E-boxes and during the repression phase, blocks FBXL3-mediated CRY1/2 ubiquitination and promotes the interaction of CRY1 and ARNTL/BMAL1. The NCOR1-HDAC3 complex regulates the circadian expression of the core clock gene ARTNL/BMAL1 and the genes involved in lipid metabolism in the liver. Also functions as deacetylase for non-histone targets, such as KAT5, MEF2D, MAPK14 and RARA. Serves as a corepressor of RARA, mediating its deacetylation and repression, leading to inhibition of RARE DNA element binding. In association with RARA, plays a role in the repression of microRNA-10a and thereby in the inflammatory response. In addition to protein deacetylase activity, also acts as protein-lysine deacylase by recognizing other acyl groups: catalyzes removal of (2E)-butenoyl (crotonyl) and 2-hydroxyisobutanoyl (2-hydroxyisobutyryl) acyl groups from lysine residues, leading to protein decrotonylation and de-2-hydroxyisobutyrylation, respectively. Catalyzes decrotonylation of MAPRE1/EB1.
    Click to Show/Hide
Uniprot ID
HDAC3_HUMAN
Ensembl ID
ENSG00000171720
HGNC ID
HGNC:4854
        Click to Show/Hide the Complete Species Lineage
Kingdom: Metazoa
Phylum: Chordata
Class: Mammalia
Order: Primates
Family: Hominidae
Genus: Homo
Species: Homo sapiens
Type(s) of Resistant Mechanism of This Molecule
  UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Drug
Approved Drug(s)
1 drug(s) in total
Click to Show/Hide the Full List of Drugs
Paclitaxel
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Melanoma [1]
Resistant Disease Melanoma [ICD-11: 2C30.0]
Resistant Drug Paclitaxel
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
Cell invasion Activation hsa05200
Cell migration Activation hsa04670
In Vitro Model SNU387 cells Liver Homo sapiens (Human) CVCL_0250
Malme3M cells Skin Homo sapiens (Human) CVCL_1438
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
MTT assay
Mechanism Description miR-326, which forms a negative feedback regulatory loop with HDAC3, regulates the invasion and the metastatic potential of cancer cells and tumor-induced angiogenesis in response to anti-cancer drugs. miR-200b, miR-217, and miR-335, which form a positive feedback loop with HDAC3, confer sensitivity to anti-cancer drugs. We show that CAGE, reported to form a feedback loop with miR-200b, serves as a downstream target of HDAC3 and miR-326. In this study, we show that the regulation of the miR-326/HDAC3 axis can be employed for the development of anti-cancer therapeutics.
Disease- and Tissue-specific Abundances of This Molecule
ICD Disease Classification 02
Click to Show/Hide the Resistance Disease of This Class
Melanoma [ICD-11: 2C30]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Skin
The Specified Disease Melanoma
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 4.19E-01; Fold-change: -2.36E-02; Z-score: -6.08E-02
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Tissue-specific Molecule Abundances in Healthy Individuals
Click to Show/Hide the Molecule Abundances
References
Ref 1 miR-326-histone deacetylase-3 feedback loop regulates the invasion and tumorigenic and angiogenic response to anti-cancer drugs. J Biol Chem. 2014 Oct 3;289(40):28019-39. doi: 10.1074/jbc.M114.578229. Epub 2014 Aug 19.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.