General Information of the Molecule (ID: Mol00399)
Name
Glutathione reductase (GSR) ,Homo sapiens
Synonyms
GR; GRase; GLUR; GRD1
    Click to Show/Hide
Molecule Type
Protein
Gene Name
GSR
Gene ID
2936
Location
chr8:30678066-30727846[-]
Sequence
MALLPRALSAGAGPSWRRAARAFRGFLLLLPEPAALTRALSRAMACRQEPQPQGPPPAAG
AVASYDYLVIGGGSGGLASARRAAELGARAAVVESHKLGGTCVNVGCVPKKVMWNTAVHS
EFMHDHADYGFPSCEGKFNWRVIKEKRDAYVSRLNAIYQNNLTKSHIEIIRGHAAFTSDP
KPTIEVSGKKYTAPHILIATGGMPSTPHESQIPGASLGITSDGFFQLEELPGRSVIVGAG
YIAVEMAGILSALGSKTSLMIRHDKVLRSFDSMISTNCTEELENAGVEVLKFSQVKEVKK
TLSGLEVSMVTAVPGRLPVMTMIPDVDCLLWAIGRVPNTKDLSLNKLGIQTDDKGHIIVD
EFQNTNVKGIYAVGDVCGKALLTPVAIAAGRKLAHRLFEYKEDSKLDYNNIPTVVFSHPP
IGTVGLTEDEAIHKYGIENVKTYSTSFTPMYHAVTKRKTKCVMKMVCANKEEKVVGIHMQ
GLGCDEMLQGFAVAVKMGATKADFDNTVAIHPTSSEELVTLR
    Click to Show/Hide
Function
Maintains high levels of reduced glutathione in the cytosol.
    Click to Show/Hide
Uniprot ID
GSHR_HUMAN
Ensembl ID
ENSG00000104687
HGNC ID
HGNC:4623
        Click to Show/Hide the Complete Species Lineage
Kingdom: Metazoa
Phylum: Chordata
Class: Mammalia
Order: Primates
Family: Hominidae
Genus: Homo
Species: Homo sapiens
Type(s) of Resistant Mechanism of This Molecule
  UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Drug
Approved Drug(s)
1 drug(s) in total
Click to Show/Hide the Full List of Drugs
Cisplatin
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Ovarian cancer [1]
Resistant Disease Ovarian cancer [ICD-11: 2C73.0]
Resistant Drug Cisplatin
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell proliferation Activation hsa05200
In Vitro Model A2780-DR cells Ovary Homo sapiens (Human) CVCL_EG64
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
Clonogenic assay
Mechanism Description The Essential Role of H19 Contributing to Cisplatin Resistance by Regulating Glutathione Metabolism in High-Grade Serous Ovarian Cancer.Additionally, we verified that different H19 expression levels in HGSC tissues showed strong correlation with cancer recurrence. H19 knockdown in A2780-DR cells resulted in recovery of cisplatin sensitivity in vitro and in vivo. Quantitative proteomics analysis indicated that six NRF2-targeted proteins, including NQO1, GSR, G6PD, GCLC, GCLM and GSTP1 involved in the glutathione metabolism pathway, were reduced in H19-knockdown cells. Furthermore, H19-knockdown cells were markedly more sensitive to hydrogen-peroxide treatment and exhibited lower glutathione levels. Our results reveal a previously unknown link between H19 and glutathione metabolism in the regulation of cancer-drug resistance.
Disease- and Tissue-specific Abundances of This Molecule
ICD Disease Classification 02
Click to Show/Hide the Resistance Disease of This Class
Ovarian cancer [ICD-11: 2C73]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Ovary
The Specified Disease Ovarian cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 5.18E-01; Fold-change: -3.02E-01; Z-score: -6.63E-01
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 1.61E-01; Fold-change: -3.78E-01; Z-score: -5.41E-01
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Tissue-specific Molecule Abundances in Healthy Individuals
Click to Show/Hide the Molecule Abundances
References
Ref 1 The Essential Role of H19 Contributing to Cisplatin Resistance by Regulating Glutathione Metabolism in High-Grade Serous Ovarian Cancer. Sci Rep. 2016 May 19;6:26093. doi: 10.1038/srep26093.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.