General Information of the Molecule (ID: Mol00176)
Name
Tafazzin (TAZ) ,Homo sapiens
Synonyms
Taz; Protein G4.5; EFE2; G4.5; TAZ
    Click to Show/Hide
Molecule Type
Protein
Gene Name
TAFAZZIN
Gene ID
6901
Location
chrX:154411524-154421726[+]
Sequence
MPLHVKWPFPAVPPLTWTLASSVVMGLVGTYSCFWTKYMNHLTVHNREVLYELIEKRGPA
TPLITVSNHQSCMDDPHLWGILKLRHIWNLKLMRWTPAAADICFTKELHSHFFSLGKCVP
VCRGDGVYQKGMDFILEKLNHGDWVHIFPEGKVNMSSEFLRFKWGIGRLIAECHLNPIIL
PLWHVGMNDVLPNSPPYFPRFGQKITVLIGKPFSALPVLERLRAENKSAVEMRKALTDFI
QEEFQHLKTQAEQLHNHLQPGR
    Click to Show/Hide
Function
Acyltransferase required to remodel newly synthesized phospholipid cardiolipin (1',3'-bis-[1,2-diacyl-sn-glycero-3-phospho]-glycerol or CL), a key component of the mitochondrial inner membrane, with tissue specific acyl chains necessary for adequate mitochondrial function. Its role in cellular physiology is to improve mitochondrial performance. CL is critical for the coassembly of lipids and proteins in mitochondrial membranes, for instance, remodeling of the acyl groups of CL in the mitochondrial inner membrane affects the assembly and stability of respiratory chain complex IV and its supercomplex forms. Catalyzes the transacylacion between phospholipids and lysophospholipids, with the highest rate being between phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine or PC) and CL. Catalyzes both 1-acyl-sn-glycero-3-phosphocholine (lysophosphatidylcholine or LPC) reacylation and PC-CL transacylation, that means, it exchanges acyl groups between CL and PC by a combination of forward and reverse transacylations. Also catalyzes transacylations between other phospholipids such as phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine or PE) and CL, between PC and PE, and between PC and phosphatidate (1,2-diacyl-sn-glycero-3-phosphate or PA), although at lower rate. Not regiospecific, it transfers acyl groups into any of the sn-1 and sn-2 positions of the monolysocardiolipin (MLCL), which is an important prerequisite for uniformity and symmetry in CL acyl distribution. Cannot transacylate dilysocardiolipin (DLCL), thus, the role of MLCL is limited to that of an acyl acceptor. CoA-independent, it can reshuffle molecular species within a single phospholipid class. Redistributes fatty acids between MLCL, CL, and other lipids, which prolongs the half-life of CL. Its action is completely reversible, which allows for cyclic changes, such as fission and fusion or bending and flattening of the membrane. Hence, by contributing to the flexibility of the lipid composition, it plays an important role in the dynamics of mitochondria membranes. Essential for the final stage of spermatogenesis, spermatid individualization. Required for the initiation of mitophagy. Required to ensure progression of spermatocytes through meiosis. Exon 7 of human tafazzin is essential for catalysis.
    Click to Show/Hide
Uniprot ID
TAZ_HUMAN
Ensembl ID
ENSG00000102125
HGNC ID
HGNC:11577
        Click to Show/Hide the Complete Species Lineage
Kingdom: Metazoa
Phylum: Chordata
Class: Mammalia
Order: Primates
Family: Hominidae
Genus: Homo
Species: Homo sapiens
Type(s) of Resistant Mechanism of This Molecule
  UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Drug
Approved Drug(s)
2 drug(s) in total
Click to Show/Hide the Full List of Drugs
Fluorouracil
Click to Show/Hide
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Colorectal cancer [1]
Sensitive Disease Colorectal cancer [ICD-11: 2B91.1]
Sensitive Drug Fluorouracil
Molecule Alteration Expression
Down-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Hippo signaling pathway Activation hsa04391
In Vitro Model SW480 cells Colon Homo sapiens (Human) CVCL_0546
HCT116 cells Colon Homo sapiens (Human) CVCL_0291
In Vivo Model Nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
Western blot analysis; Luciferase assay; miRNA immunoprecipitation assay
Experiment for
Drug Resistance
Caspase-9 or 3 activity assays; Flow cytometric analysis
Mechanism Description Down-regulation of miR874-3p promotes chemotherapeutic resistance in colorectal cancer via inactivation of the Hippo signaling pathway. miR874-3p directly inhibited the expression of transcriptional co-activators YAP and TAZ of the Hippo signaling pathway, resulting in the inactivation of the TEAD transcription.
Gemcitabine
Click to Show/Hide
Drug Resistance Data Categorized by Their Corresponding Mechanisms
       Unusual Activation of Pro-survival Pathway (UAPP) Click to Show/Hide
Disease Class: Pancreatic cancer [2]
Resistant Disease Pancreatic cancer [ICD-11: 2C10.3]
Resistant Drug Gemcitabine
Molecule Alteration Expression
Up-regulation
Experimental Note Revealed Based on the Cell Line Data
Cell Pathway Regulation Cell apoptosis Inhibition hsa04210
Cell viability Activation hsa05200
In Vitro Model HEK293T cells Kidney Homo sapiens (Human) CVCL_0063
MIA PaCa-2 cells Pancreas Homo sapiens (Human) CVCL_0428
PANC-1 cells Pancreas Homo sapiens (Human) CVCL_0480
HPDE6-C7 cells Pancreas Homo sapiens (Human) CVCL_0P38
In Vivo Model Nude mouse xenograft model Mus musculus
Experiment for
Molecule Alteration
Western blot analysis
Experiment for
Drug Resistance
CCK8 assay; Flow cytometry assay
Mechanism Description Down-regulation of microRNA-455-3p Links to Proliferation and Drug Resistance of Pancreatic Cancer Cells via Targeting TAZ.
Disease- and Tissue-specific Abundances of This Molecule
ICD Disease Classification 02
Click to Show/Hide the Resistance Disease of This Class
Pancreatic cancer [ICD-11: 2C10]
Click to Show/Hide
Differential expression of molecule in resistant diseases
The Studied Tissue Pancreas
The Specified Disease Pancreatic cancer
The Expression Level of Disease Section Compare with the Healthy Individual Tissue p-value: 7.14E-01; Fold-change: -5.21E-02; Z-score: -2.01E-01
The Expression Level of Disease Section Compare with the Adjacent Tissue p-value: 7.30E-01; Fold-change: -3.14E-02; Z-score: -1.65E-01
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Disease-specific Molecule Abundances Click to View the Clearer Original Diagram
Tissue-specific Molecule Abundances in Healthy Individuals
Click to Show/Hide the Molecule Abundances
References
Ref 1 Downregulation of miR-874-3p promotes chemotherapeutic resistance in colorectal cancer via inactivation of the Hippo signaling pathway. Oncol Rep. 2017 Dec;38(6):3376-3386. doi: 10.3892/or.2017.6041. Epub 2017 Oct 17.
Ref 2 Downregulation of MicroRNA-455-3p Links to Proliferation and Drug Resistance of Pancreatic Cancer Cells via Targeting TAZ. Mol Ther Nucleic Acids. 2018 Mar 2;10:215-226. doi: 10.1016/j.omtn.2017.12.002. Epub 2017 Dec 9.

If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.