Molecule Information
General Information of the Molecule (ID: Mol00088)
Name |
Heat shock 70 kDa protein 1A (HSP70)
,Homo sapiens
|
||||
---|---|---|---|---|---|
Synonyms |
Heat shock 70 kDa protein 1; HSP70-1; HSP70.1; HSP72; HSPA1; HSX70
Click to Show/Hide
|
||||
Molecule Type |
Protein
|
||||
Gene Name |
HSPA1A
|
||||
Gene ID | |||||
Location |
chr6:31815543-31817946[+]
|
||||
Sequence |
MAKAAAIGIDLGTTYSCVGVFQHGKVEIIANDQGNRTTPSYVAFTDTERLIGDAAKNQVA
LNPQNTVFDAKRLIGRKFGDPVVQSDMKHWPFQVINDGDKPKVQVSYKGETKAFYPEEIS SMVLTKMKEIAEAYLGYPVTNAVITVPAYFNDSQRQATKDAGVIAGLNVLRIINEPTAAA IAYGLDRTGKGERNVLIFDLGGGTFDVSILTIDDGIFEVKATAGDTHLGGEDFDNRLVNH FVEEFKRKHKKDISQNKRAVRRLRTACERAKRTLSSSTQASLEIDSLFEGIDFYTSITRA RFEELCSDLFRSTLEPVEKALRDAKLDKAQIHDLVLVGGSTRIPKVQKLLQDFFNGRDLN KSINPDEAVAYGAAVQAAILMGDKSENVQDLLLLDVAPLSLGLETAGGVMTALIKRNSTI PTKQTQIFTTYSDNQPGVLIQVYEGERAMTKDNNLLGRFELSGIPPAPRGVPQIEVTFDI DANGILNVTATDKSTGKANKITITNDKGRLSKEEIERMVQEAEKYKAEDEVQRERVSAKN ALESYAFNMKSAVEDEGLKGKISEADKKKVLDKCQEVISWLDANTLAEKDEFEHKRKELE QVCNPIISGLYQGAGGPGPGGFGAQGPKGGSGSGPTIEEVD Click to Show/Hide
|
||||
Function |
Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The co-chaperones have been shown to not only regulate different steps of the ATPase cycle, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The co-chaperones are of three types: J-domain co-chaperones such as HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1. Maintains protein homeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. Its acetylation/deacetylation state determines whether it functions in protein refolding or protein degradation by controlling the competitive binding of co-chaperones HOPX and STUB1. During the early stress response, the acetylated form binds to HOPX which assists in chaperone-mediated protein refolding, thereafter, it is deacetylated and binds to ubiquitin ligase STUB1 that promotes ubiquitin-mediated protein degradation. Regulates centrosome integrity during mitosis, and is required for the maintenance of a functional mitotic centrosome that supports the assembly of a bipolar mitotic spindle. Enhances STUB1-mediated SMAD3 ubiquitination and degradation and facilitates STUB1-mediated inhibition of TGF-beta signaling. Essential for STUB1-mediated ubiquitination and degradation of FOXP3 in regulatory T-cells (Treg) during inflammation. Negatively regulates heat shock-induced HSF1 transcriptional activity during the attenuation and recovery phase period of the heat shock response. Involved in the clearance of misfolded PRDM1/Blimp-1 proteins. Sequesters them in the cytoplasm and promotes their association with SYNV1/HRD1, leading to proteasomal degradation.
Click to Show/Hide
|
||||
Uniprot ID | |||||
Ensembl ID | |||||
HGNC ID | |||||
Click to Show/Hide the Complete Species Lineage | |||||
Type(s) of Resistant Mechanism of This Molecule
UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Drug
Approved Drug(s)
1 drug(s) in total
Cisplatin
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Disease Class: Osteosarcoma | [1] | |||
Sensitive Disease | Osteosarcoma [ICD-11: 2B51.0] | |||
Sensitive Drug | Cisplatin | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell apoptosis | Activation | hsa04210 | |
Cell viability | Inhibition | hsa05200 | ||
JNk signaling pathway | Activation | hsa04010 | ||
In Vitro Model | MG63 cells | Bone marrow | Homo sapiens (Human) | CVCL_0426 |
SAOS-2 cells | Bone marrow | Homo sapiens (Human) | CVCL_0548 | |
U2OS cells | Bone | Homo sapiens (Human) | CVCL_0042 | |
SJSA-1 cells | Bone | Homo sapiens (Human) | CVCL_1697 | |
HOS cells | Bone | Homo sapiens (Human) | CVCL_0312 | |
Sk-ES-1 cells | Bone | Homo sapiens (Human) | CVCL_0627 | |
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
MTT assay; Flow cytometry assay | |||
Mechanism Description | miR-223 overexpression could sensitize OS cell lines to CDDP and Hsp70 protein levels were remarkably reduced by miR-223 overexpression whereas increased by miR-223 inhibition. |
References
If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.