Molecule Information
General Information of the Molecule (ID: Mol00079)
Name |
Solute carrier family 2 member 1 (SLC2A1)
,Homo sapiens
|
||||
---|---|---|---|---|---|
Synonyms |
Glucose transporter type 1; erythrocyte/brain; GLUT-1; HepG2 glucose transporter; GLUT1
Click to Show/Hide
|
||||
Molecule Type |
Protein
|
||||
Gene Name |
SLC2A1
|
||||
Gene ID | |||||
Location |
chr1:42925353-42958893[-]
|
||||
Sequence |
MEPSSKKLTGRLMLAVGGAVLGSLQFGYNTGVINAPQKVIEEFYNQTWVHRYGESILPTT
LTTLWSLSVAIFSVGGMIGSFSVGLFVNRFGRRNSMLMMNLLAFVSAVLMGFSKLGKSFE MLILGRFIIGVYCGLTTGFVPMYVGEVSPTALRGALGTLHQLGIVVGILIAQVFGLDSIM GNKDLWPLLLSIIFIPALLQCIVLPFCPESPRFLLINRNEENRAKSVLKKLRGTADVTHD LQEMKEESRQMMREKKVTILELFRSPAYRQPILIAVVLQLSQQLSGINAVFYYSTSIFEK AGVQQPVYATIGSGIVNTAFTVVSLFVVERAGRRTLHLIGLAGMAGCAILMTIALALLEQ LPWMSYLSIVAIFGFVAFFEVGPGPIPWFIVAELFSQGPRPAAIAVAGFSNWTSNFIVGM CFQYVEQLCGPYVFIIFTVLLVLFFIFTYFKVPETKGRTFDEIASGFRQGGASQSDKTPE ELFHPLGADSQV Click to Show/Hide
|
||||
Function |
Facilitative glucose transporter, which is responsible for constitutive or basal glucose uptake. Has a very broad substrate specificity; can transport a wide range of aldoses including both pentoses and hexoses. Most important energy carrier of the brain: present at the blood-brain barrier and assures the energy-independent, facilitative transport of glucose into the brain. In association with BSG and NXNL1, promotes retinal cone survival by increasing glucose uptake into photoreceptors.
Click to Show/Hide
|
||||
Uniprot ID | |||||
Ensembl ID | |||||
HGNC ID | |||||
Click to Show/Hide the Complete Species Lineage | |||||
Type(s) of Resistant Mechanism of This Molecule
IDUE: Irregularity in Drug Uptake and Drug Efflux
UAPP: Unusual Activation of Pro-survival Pathway
Drug Resistance Data Categorized by Drug
Approved Drug(s)
4 drug(s) in total
Cisplatin
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Irregularity in Drug Uptake and Drug Efflux (IDUE) | ||||
Disease Class: Bladder cancer | [1] | |||
Sensitive Disease | Bladder cancer [ICD-11: 2C94.0] | |||
Sensitive Drug | Cisplatin | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | miR218-Glut1 signaling pathway | Regulation | hsa05206 | |
In Vitro Model | EJ cells | Bladder | Homo sapiens (Human) | CVCL_UI82 |
T24 cells | Bladder | Homo sapiens (Human) | CVCL_0554 | |
Experiment for Molecule Alteration |
Western blot analysis | |||
Experiment for Drug Resistance |
CCK8 assay | |||
Mechanism Description | miR218 increases the sensitivity of bladder cancer to cisplatin by targeting Glut1. |
Doxorubicin
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Disease Class: Liver cancer | [2] | |||
Sensitive Disease | Liver cancer [ICD-11: 2C12.6] | |||
Sensitive Drug | Doxorubicin | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell proliferation | Inhibition | hsa05200 | |
In Vitro Model | HepG2 cells | Liver | Homo sapiens (Human) | CVCL_0027 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | Curcumin mediated the amputation of chemoresistance by repressing the hyperglycolytic behavior of malignant cells via modulated expression of metabolic enzymes (HkII, PFk1, GAPDH, PkM2, LDH, SDH, IDH, and FASN), transporters (GLUT-1, MCT-1, and MCT-4), and their regulators. Along altered constitution of extracellular milieu, these molecular changes culminated into improved drug accumulation, chromatin condensation, and induction of cell death. |
Methotrexate
Drug Sensitivity Data Categorized by Their Corresponding Mechanisms | ||||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Disease Class: Liver cancer | [2] | |||
Sensitive Disease | Liver cancer [ICD-11: 2C12.6] | |||
Sensitive Drug | Methotrexate | |||
Molecule Alteration | Expression | Down-regulation |
||
Experimental Note | Revealed Based on the Cell Line Data | |||
Cell Pathway Regulation | Cell proliferation | Inhibition | hsa05200 | |
In Vitro Model | HepG2 cells | Liver | Homo sapiens (Human) | CVCL_0027 |
Experiment for Molecule Alteration |
Western blotting analysis | |||
Experiment for Drug Resistance |
MTT assay | |||
Mechanism Description | Curcumin mediated the amputation of chemoresistance by repressing the hyperglycolytic behavior of malignant cells via modulated expression of metabolic enzymes (HkII, PFk1, GAPDH, PkM2, LDH, SDH, IDH, and FASN), transporters (GLUT-1, MCT-1, and MCT-4), and their regulators. Along altered constitution of extracellular milieu, these molecular changes culminated into improved drug accumulation, chromatin condensation, and induction of cell death. |
Tamoxifen
Drug Resistance Data Categorized by Their Corresponding Mechanisms | ||||
Unusual Activation of Pro-survival Pathway (UAPP) | ||||
Disease Class: Breast cancer | [3] | |||
Resistant Disease | Breast cancer [ICD-11: 2C60.3] | |||
Resistant Drug | Tamoxifen | |||
Molecule Alteration | Expression | Up-regulation |
||
Experimental Note | Identified from the Human Clinical Data | |||
Experiment for Molecule Alteration |
Immunohistochemical assay | |||
Mechanism Description | Overexpression of GLUT1 has been reported in aggressive and malignant breast cancer and has been correlated with the poor prognosis. Increased expression of GLUT1 in the TAMR cells compared to the TAM-sensitive cells. knockdown of GLUT1 in TAMR MCF-7 cells resulted in increased expression of p62 protein and decreased levels of LC3B-II, leading to autophagy and cells becoming sensitive to TAM. |
Disease- and Tissue-specific Abundances of This Molecule
ICD Disease Classification 02
Liver cancer [ICD-11: 2C12]
Differential expression of molecule in resistant diseases | ||
The Studied Tissue | Liver | |
The Specified Disease | Liver cancer | |
The Expression Level of Disease Section Compare with the Healthy Individual Tissue | p-value: 2.22E-08; Fold-change: 2.12E-03; Z-score: 1.22E-02 | |
The Expression Level of Disease Section Compare with the Adjacent Tissue | p-value: 2.44E-12; Fold-change: 7.94E-02; Z-score: 3.55E-01 | |
The Expression Level of Disease Section Compare with the Other Disease Section | p-value: 6.79E-04; Fold-change: 1.78E-01; Z-score: 1.38E+00 | |
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
Molecule expression in tissue other than the diseased tissue of patients
|
||
Disease-specific Molecule Abundances | Click to View the Clearer Original Diagram | |
Breast cancer [ICD-11: 2C60]
Differential expression of molecule in resistant diseases | ||
The Studied Tissue | Breast tissue | |
The Specified Disease | Breast cancer | |
The Expression Level of Disease Section Compare with the Healthy Individual Tissue | p-value: 1.10E-51; Fold-change: 3.16E-01; Z-score: 9.69E-01 | |
The Expression Level of Disease Section Compare with the Adjacent Tissue | p-value: 1.11E-14; Fold-change: 3.90E-01; Z-score: 1.13E+00 | |
Molecule expression in the normal tissue adjacent to the diseased tissue of patients
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
|
||
Disease-specific Molecule Abundances | Click to View the Clearer Original Diagram | |
Bladder cancer [ICD-11: 2C94]
Differential expression of molecule in resistant diseases | ||
The Studied Tissue | Bladder tissue | |
The Specified Disease | Bladder cancer | |
The Expression Level of Disease Section Compare with the Healthy Individual Tissue | p-value: 1.00E-06; Fold-change: 1.07E+00; Z-score: 3.52E+00 | |
Molecule expression in the diseased tissue of patients
Molecule expression in the normal tissue of healthy individuals
|
||
Disease-specific Molecule Abundances | Click to View the Clearer Original Diagram | |
Tissue-specific Molecule Abundances in Healthy Individuals
References
If you find any error in data or bug in web service, please kindly report it to Dr. Sun and Dr. Zhang.